Homotopy Perturbation Method for Analysis Nonlinear Vibration of Double-Walled Carbon Nanotubes

Article Preview

Abstract:

To obtain the approximately analytical solution of double-walled carbon nanotubes (DWNTs) nonlinear vibration. In this study, homotopy perturbation method (HPM) was used to solve nonlinear vibration equation of DWNTs. Novel and accurate analytical solutions for the frequency and displacement are derived. Comparison of the result obtained by the HPM with exact solutions reveals that only the first or second order approximation of the HPM leads to higher accurate solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-190

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature 354 (1991) 56.

Google Scholar

[2] W. Yang, X.L. Ma, H.T. Wang and W. Hong: The Advancement of Mechanics, Vol. 33 (2003) No.2, pp.175-185.

Google Scholar

[3] J.H. He: Comput. Methods Appl. Mech. Eng, Vol. 178 (1999) pp.257-262.

Google Scholar

[4] J.H. He: Int J. of Non-Linear Mech., Vol.35 (2000) pp.37-43.

Google Scholar

[5] J.H. He: Int J. Mod Phys B, Vol. 20 (2006) No.10, pp.1141-1199.

Google Scholar

[6] M. Fesanghary, T. Pirbodaghi, M. Asghari and H. Sojoudi: Chaos, Solitons and Fractals, Vol.42 (2009) pp.571-576.

DOI: 10.1016/j.chaos.2009.01.024

Google Scholar

[7] P.D. Ariel: Comput. Math. Appl. Vol.54 (2007) pp.920-925.

Google Scholar

[8] S. Abbasbandy: Chaos Solitons Fractals, Vol.31 (2007) pp.1243-1247.

Google Scholar

[9] M. Gorji, D.D. Ganji and S. Soleimani: Int. J. Nonlinear Sci. Vol.8 (2007) pp.319-328.

Google Scholar

[10] X.M. Ma, Y.T. Pan and L.Z. Chang: Procedia Engineering., Vol.15 (2011), pp.4768-4773.

Google Scholar

[11] Y. Yan, W.Q. Wang and L.X. Zhang: Appl.Math. Model., Vol.35 (2011), pp.2279-2289.

Google Scholar

[12] H.T. Hahn and J.G. Williams: Composite Materials Testing and Design Vol.7 (1984) pp.115-139.

Google Scholar

[13] S.K. Lai, C.W. Lim, B.S. Wu, et al.: Appl. Math. Modeling Vol. 33 (2009) pp.852-866.

Google Scholar

[14] A. Pantano, M.C. Boyce and D.M. Parks: Physical Review Letters Vol.91(2003) No.14, pp.145501-1–145501-4.

Google Scholar