Synthesis and Characterization of Antimony Doped Tin Oxide Conductive Nanoparticles by Alkoxide Hydrolysis Method

Article Preview

Abstract:

Antimony doped tin oxide (ATO) conductive nano-particles are synthesised by alkoxide hydrolysis method using SnCl4•5H2O and SbCl3 as raw materials. The optimum parameters are determined as: Sb3+ doped molar concentration 15%, reaction temperature 60°C and roasting temperature 600°C. Under optimum conditions, the synthesised nano-particles are characterized by means of X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD results show that all Sb ions came into the SnO2 lattice to substitute Sn ions. The image of TEM shows the ATO conductive nano-particles average size is 5 nm. Volume resistivity lowest value of ATO nano-particles is 141 Ω•cm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-171

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Marcel C, Hegde M S. Electrochemica Acta. Vol. 46(200l), p.2097.

Google Scholar

[2] Shukla S,Seal S. Journal of Nanoscience and Nanotechnolohy, Vol.4(2004),p.141.

Google Scholar

[3] Theo T. Emons , Jianquan Li , and Linda F. Nazar. Journal of the American Chemical Society. Vol. 124(2002),p.8516.

Google Scholar

[4] K.Y Rajpurea, M.N Kusumadea, Michael N Neumann-Spallartb, et al. Materials Chemistry and Physics. Vol. 64(2000),p.184.

Google Scholar

[5] H.S. Varol, A. Hinsch. Solar Energy Materials and Solar Cells. Vol.40(1996), p.273.

Google Scholar

[6] Pan Q Y, Xu J Q, Dong X W. Sensors and Actuators B:Chemical. Vol.66(2000),p.237.

Google Scholar

[7] Burgurd D,Goebbert C,Nass R.Sol-Gel Science and Technology. Vol.13(1998), pp.789-792.

DOI: 10.1023/a:1008682014444

Google Scholar

[8] Keun-Soo Kim, Seog-Young Yoon, Won-Jae Lee, et a1. Surface and Coatings Technology. Vol.138 (2001),p.229.

Google Scholar

[9] Z.Crrijakorel, B.Orel, M.Hodoscek,et a1. Journal of Material Science. Vol.27(1992),p.313.

Google Scholar

[10] J.P. Coleman J.J. Freeman, P.Madhukar, J.H. Wagenknecht. Displays.Vol. 20(1999), p.145.

Google Scholar

[11] Katharina Großmanna , Krisztina E. Kovácsb, David K,et al.Sensors and Actuators B:Chemical. Vol.158(2011),p.388.

Google Scholar

[12] B. Benrabaha, A. Bouazaa, A. Kadarib,et al. Superlattices and Microstructures. Vol.(2011), p.591.

Google Scholar

[13] Jiann-Shing Jeng. Applied Surface Science.Vol.258(2012),p.5981.

Google Scholar

[14] Hao An, Hao Cui, Wenyi Zhang, et al. Chemical Engineering Journal. Vol.209(2012),p.86.

Google Scholar