The Electrical Characterization of p-CdTe/n-Si (111) Heterojunction Diode

Article Preview

Abstract:

p-CdTe film has been deposited on n-Si(111) substrate by thermal evaporation technique. The prepared CdTe/Si heterojunction diodes have been annealed at 573K. The capacitance-voltage measurements have studied for the prepared heterojunctions under 2 KHz frequencies. The capacitance-voltage measurement indicated that these diodes are abrupt. The capacitance at zero bias, the built in voltage and the doping concentration increased after annealing process while the zero bias depletion region width is decreased. The carrier transport mechanism for CdTe/Si diodes in dark is tunneling-recombination. From current-voltage measurement at dark, the values of ideality factor are 2.9 and 3.8. The values of reverse saturation current are 3.77×10-7 and 9.36×10-8 Amperes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-241

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.N. Jacobs, L.A. Almeida, J. Markunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, S.B. Qadri, T. Lee, and M. Kim: Comparative study of thermal mismatch effects in CdTe/Si, CdTe/Ge, and CdTe/GaAs composite structures: CS MANTECH Conference, Chicago, Illinois, USA (2008)

DOI: 10.1016/j.jcrysgro.2008.02.029

Google Scholar

[2] J. Suela, I. R.B. Ribeiro, S.O. Ferreira, A. Malachias, G.N. Fontes, L.A. Montoro, and A. J. Ramirez: J. Appl. Phys. Vol. 107, (2010), P. 064305-1.

Google Scholar

[3] E. C. Garnett and P. Yang: J. Am. Chem. Soc. Vol. 130 (2008), 9224.

Google Scholar

[4] M.H. Ehsan, H.R. Dizaji, M.H. Mirha j: Digest Journal of Nanomaterials and Biostructures Vol. 7 (2012) P. 629.

Google Scholar

[5] W.A. Pinheiro, V.D. Falcão, L. R. de Oliveira Cruz, C.L. Ferreira: Materials Research Vol. 91 (2006), P. 47.

Google Scholar

[6] K. Zanio: Semiconductor and Semimetal volume 13 (Academic Press, USA 1978).

Google Scholar

[7] S. M. Sze: Physics of Semiconductor Devices 3rd edition (John Wiley and Sons, USA 2007).

Google Scholar

[8] W. F. Mohammad: Circuits and Systems Vol. 4 (2012), P. 42.

Google Scholar

[9] M. Morgan and K. Board: An Introduction to Semiconductor Microtechnology (John Wiley and Sons Inc., USA 1991).

Google Scholar

[10] S. H. Demtsu: Impact of Back–Contact Materials on Performance and Stability of CdS/CdTe Solar Cells, PhD thesis, Colorado State University, Fort Collins, Colorado, USA (2006).

Google Scholar

[11] A.A. Alnajjar, M.F.A. Alias, R.A. Almatuk and A.A. Al-Douri: Renewable Energy Vol. 34, 21 (2009), P. 2160.

DOI: 10.1016/j.renene.2009.01.008

Google Scholar

[12] M.A. Green: Solar Cells; Operating Principles, Technology and System Applications (Prince-Hall Inc, USA 1982).

Google Scholar

[13] F. Buch, A.L. Fahrenbruch and R.H. Bube: Journal of Applied Physics Vol. 48 (1977), P. 1596.

Google Scholar

[14] A.G. Milnes and D.L. Feucht: Hetrojunctions and Metal-Semiconductor Junctions (Academic press, UK 1972).

Google Scholar

[15] M. Niraula, K. Yasuda, A. Watanabe, Y. Kai, H. Ichihashi, W. Yamada, H. Oka, T.Yoneyama, H . Nakashima, T. Nakanishi, K. Matsumoto, D. Katoh and Y Agata: IEEE Nuclear Science Vol. 56 (2009), P. 836.

DOI: 10.1109/tns.2008.2010256

Google Scholar

[16] M. Niraula, K. Yasuda, K. Noda, K. Nakamura, I. Shingu, M. Yokota, M. Omura, S. Minoura, H. 0O hashi,v R. Tanaka and Y. Agata: IEEE Nuclear Science Symposium Conference Record (2006).

DOI: 10.1109/nssmic.2006.353816

Google Scholar