Synthesis of Mesoporous V-TiO2 with Different Surfactants: The Effect of Surfactant Type on Photocatalytic Properties

Article Preview

Abstract:

Mesoporous vanadium doped titania (V-TiO2) photocatalyst was synthesized with the use of a new surfactant (Gemini) for the first time. In order to investigate the surfactant effect on the photocatalytic activity of catalysts, different surfactants containing Gemini, pluronic F127, pluronic P123, CTAB, Hexadecylamine and PEG 6000 were used in the preparation of mesoporous V-TiO2 photocatalyst as a templating agent. The catalysts were characterized by FT-IR, XRD, SEM, EDX, nitrogen adsorption-desorption isotherm, and DRS. The nanosized V-TiO2 with Gemini surfactant (V-TiO2(G)) exhibited the highest visible light driven photocatalytic efficiency for degrading MO dye. The results showed that the surfactant type played an important role on the structure and photocatalytic activity of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, S.S. Mao, Chem. Rev. Vol. 107 (2007), p.2891.

Google Scholar

[2] X. Nie, Sh. Zhou, G. Maeng, K. Sohlberg, Int. J. Photoenergy, (2009), Article ID 294042, p.1.

Google Scholar

[3] K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Appl. Catal. B: Environ. Vol. 89 (2009), p.494.

Google Scholar

[4] T. Mishra, J. Hait, N. Aman, M. Gunjan, B. Mahato, R.K. Jana, J. Colloid Interf. Sci. Vol. 327 (2008), p.377.

Google Scholar

[5] S.K. Mehta, S. Kumar, Mater. Chem. Phys. Vol. 131 (2011), p.94.

Google Scholar

[6] A. Ahmed, N.S. Gajbhiye, A.G. Joshi, Mate. Chem. Phys. Vol. 129 (2011), p.740.

Google Scholar

[7] M. Alvaro, C. Aprile, M. Benitez, E. Carbonell, H. Garcia, J. Phys. Chem. B Vol. 110 (2006), p.6661.

Google Scholar

[8] Y. Qu, W. Wang, L. Jing, S. Song, X. Shi, L. Xue, H. Fu, Appl. Surf. Sci. Vol. 257 (2010), p.151.

Google Scholar

[9] J. Liu, R. Han, Y. Zhao, H. Wang, W. Lu, T. Yu, Y. Zhang, J. Phys. Chem. C Vol. 115 (2011), p.4507.

Google Scholar

[10] M. Navgire, M. Lande, A. Gambhire, S. Rathod, D. Aware, S. Bhitre, Bull. Mater. Sci. Vol. 34 (2011), p.535.

DOI: 10.1007/s12034-011-0108-2

Google Scholar

[11] J. Tang, Z. Zou, J. Ye, Angew, Chem. Int. Edit. Vol. 43 (2004), p.4463.

Google Scholar

[12] M.S. Nahar, K. Hasegawa, S. Kagaya, Chemosphere Vol. 65 (2006), p.1976.

Google Scholar

[13] X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li, M. Huo, Y. Guo, J. Hazard. Mater. Vol. 175 (2010), p.429.

Google Scholar

[14] S.K. Hait, S.P. Moulik, Curr. Sci. Vol. 82 (2002), p.11011.

Google Scholar

[15] A. Hagfeldt , M. Graetzel, Chem. Rev. Vol. 95 (1995), p.49.

Google Scholar

[16] S. Jothivel, R. Velmurugan, K. Selvam, B. Krishnakumar, M. Swaminathan, Sep. Purif. Technol. Vol. 77 (2011), p.245.

Google Scholar

[17] M.M. Yusuf, H. Imai, H. Hirashima, J. Sol-Gel Sci. Techn. 28 (2003) 97-104.

Google Scholar