Synthesis and Properties of Ionogels Based on 1-vinyl-3-alkylimidazolium Tetrahalogenidoferrate (III) [VAIM][FeClnBr4-n] and PMMA

Article Preview

Abstract:

The paramagnetic ionic liquid (IL) 1-vinyl-3-alkylimidazolium tetrahalogenidoferrate (Ⅲ) [VAIM][FeClnBr4-n] (A= n-butyl, n-pentyl, n-hexyl; n=3,4 or 2, 3,4.) has been used in the synthesis of paramagnetic [VAIM][FeClnBr4-n]/PMMA ionogels. The thermal stability for the ionogels increases significantly compared with [VAIM][FeClnBr4-n] and PMMA. Magnetic susceptibility measurements were carried out in the temperature range 1.8 K–300 K. The Curie–Weiss temperature is -0.989 K, -0.669 K and -0.169 K, respectively as the alkyl chain to 3 position of imidazole ring elongate. The magnetic properties are similar to those reported for the pure IL and the self-made [VAIM][FeClnBr4-n] and are not influenced by the incorporation of paramagnetic [VAIM][FeClnBr4-n] into the PMMA matrix. The magnetic ionogel is thus an interesting material combining the mechanical properties of the polyer with the functionality of the magnetic IL, such as magnetism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Gomes, S.M. Bruno, S. Gago, R.P. Lopes, D.A. Machado, A.P. Carminatti, A.A. Valente, M. Pillinger and I.S. Goncalves: J. Org. Chem. Vol. 696 (2011), p.3543

Google Scholar

[2] R.G. Kalkhambkar and K.K. Laali: Tetrahedron Lett. Vol. 52 (2011), p.5525

Google Scholar

[3] R.D. Tilve, M.V. Alexander, A.C. Khandekar, V.R. Samanth and V. R. Khanetkar: J. Mol. Cat. A Vol. 223 (2004), p.237

Google Scholar

[4] X.W. Sun, S.Q. Zhao and R.A. Wang: Chin. J. Catal. Vol. 25 (2004), p.247

Google Scholar

[5] K.H.A.E. Alkhaldi, M.S. Al-Tuwaim, M.S. Fandary and A.S. Al-Jimaz: Fluid Phase Equilibr. Vol. 309 (2011), p.102

DOI: 10.1016/j.fluid.2011.06.036

Google Scholar

[6] A.V. Orchilles, P. J. Miguel, E. Vercher and A. Martinez-Andreu: J. Chem. Eng. Data Vol. 52 (2006), p.141

Google Scholar

[7] A.V. Orchilles, P.J. Miguel, V. Gonzalez-Alfaro, E. Vercher and A. Martinez-Andreu: J. Chem. Eng. Data Vol. 57 (2012), p.394

Google Scholar

[8] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno and B. Scrosati: Nat. Mater. Vol. 8 (2009), p.621

Google Scholar

[9] J. Lee, M. J. Panzer, Y. Y. He, T. P. Lodge and C. D. Frisbie: J. Am. Chem. Soc. Vol. 129 (2007), p.4532

Google Scholar

[10] E.R. Parnham and R.E. Morris: Chem. Mater. Vol. 18 (2006), p.4882

Google Scholar

[11] M. Antonietti, D.B. Kuang, B. Smarsly and Z. Yong: Angew. Chem. Int. Edit. Vol. 43 (2004), p.4988

Google Scholar

[12] Y. Yoshida, J. Fujii, K. Muroi, A. Otsuka, G. Saito, M. Takahashi and T. Yoko: Synth. Met. Vol. 153 (2005). p.421

Google Scholar

[13] Y. Yoshida, A. Otsuka, G. Saito, S. Natsume, E. Nishibori, M. Takata, M. Sakata, M. Takahashi and T. Yoko: Bull. Chem. Soc. Jpn.Vol. 78 (2005), p. (1921)

Google Scholar

[14] Y. Yoshida and G. Saito: J. Mater. Chem. Vol. 16 (2006), p.1254

Google Scholar

[15] M. Li, S.L. De Rooy, D.K. Bwambok, B. El-Zahab, J.F. DiTusa and I.M. Warner: Chem. Commun. (2009), p.6922

DOI: 10.1039/b917683g

Google Scholar

[16] R.E. Del Sesto, T.M. McCleskey, A.K. Burrell, G.A. Baker, J.D. Thompson, B. L. Scott, J.S. Wilkes and P. Williams: Chem. Commun. (2008), p.447

DOI: 10.1039/b711189d

Google Scholar

[17] S. Pitula and A.-V.Mudring: Chem. Eur. J. Vol. 16 (2010), p.3355

Google Scholar

[18] R.E. Del Sesto, C. Corley, A. Robertson and J.S. Wilkes: J. Organomet. Chem. Vol. 690 (2005), p.2536

Google Scholar

[19] T. Peppel, M. Köckerling, M. Geppert-Rybczyń ska, R.V. Ralys, J.K. Lehmann, S.P. Verevkin and A. Heintz: Angew. Chem. Int. Ed. Vol. 46 (2010), p.7116

DOI: 10.1002/anie.201000709

Google Scholar

[20] B. Mallick, B. Balke, C. Felser and A.-V. Mudring: Angew. Chem. Int. Ed. Vol. 47 (2008), p.7635

Google Scholar

[21] S. Hayashi and H. Hamaguchi: Chem. Lett. Vol. 33 (2004), p.1590

Google Scholar

[22] J. Lee, L. G. Kaake, J. H. Cho, X. Y. Zhu, T. P. Lodge and C. D. Frisbie: J. Phys. Chem. C Vol. 113 (2009), p.8972

Google Scholar

[23] T. P. Lodge: Science Vol. 321 (2008), p.50

Google Scholar

[24] Z.G Chen, F.Y. Li, H. Yang, T. Yi and C.H. Huang: Chemphyschem Vol. 8 (2007), pp.1293-1297.

Google Scholar

[25] F. Vidal, C. Plesse, H. Randriamahazaka, D. Teyssie and C. Chevrot: Mol Cryst Liq Cryst Vol.448 (2006), p.95

Google Scholar

[26] G.P. Pandey, Y. Kumar and S.A. Hashmi: Indian J. Chem. Vol. 49 (2010), p.743

Google Scholar

[27] M. Deepa, S. Ahmad, K.N. Sood, J. Alam, S. Ahmad and A.K. Srivastava: Electrochim Acta Vol. 52(2007), p.7453

Google Scholar

[28] J.B. Tang, M. Radosz and Y.Q. Shen:Macromolecules Vol. 41 (2008), p.493

Google Scholar

[29] Y. Zhao, H. Liu , Y. Kou, M. Li, Z. Zhu and Q. Zhuang: Electrochem Commun Vol. 9 (2007), p.2457

Google Scholar

[30] Y.M. Tang, X.L. Hu, P. Guan, X.P. Lin and X.Q. Li: Submitted to J. Chem. Eng. Data (2012)

Google Scholar

[31] X.H. Li, F.M. Yang, Q. Zhou and S.J. Zhang: Chinese J. process Eng. Vol. 10 (2010), p.788

Google Scholar