Microstructure and Electrochemical Properties of Ce-Containing 7072 Al Alloy

Article Preview

Abstract:

The microstructure and electrochemical properties of Ce-containing 7072 Al alloy were investigated through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Tafel polarization analysis. It was found that Ce alloying could result in a formation of finer grains in the simulated brazing alloys. The 7072 Al alloy with 0.15% Ce had desirable distribution of precipitates. The electrochemical testing results indicated that Ce element had a great impact on the corrosion potential of the alloy tested in 0.5% NaCl solution. Alloying with 0.15% Ce element could make the corrosion potential shift to inert direction and reduce the corrosion current density. An excessive Ce addition could weaken its positive effect on the corrosion resistance of the Ce-containing alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Goel, P. Furrer and H. Warlimont, Recrystallization and precipitation in aluminum manganese alloys, Aluminium 50 (1974) 511-516.

Google Scholar

[2] G.S. Frankel, Pitting of metals: A review of the critical factors, J. Electrochem. Soc. 145 (1998) 2186-2198.

Google Scholar

[3] S. Joshi, E.A. Kulp, W.G. Fahrenholtz and M.J. O'Keefe, Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1 M NaCl solutions, Corros. Sci. 60 (2012) 290-295.

DOI: 10.1016/j.corsci.2012.03.023

Google Scholar

[4] P. Campestrinia, H. Terryna, A. Hovestadb and J.H.W. de Wita, Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure, Surf. Coat. Technol. 173 (2004) 365-381.

Google Scholar

[5] A.S. Hamdy, Corrosion protection of aluminum composites by silicate/cerate conversion coating, Surf. Coat. Technol. 200 (2006) 3786 – 3792.

DOI: 10.1016/j.surfcoat.2005.03.012

Google Scholar

[6] S. Kim, S. Jeon and I. Lee, Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1,Corros. Sci, 52 (2010) 1897–1904.

DOI: 10.1016/j.corsci.2010.02.043

Google Scholar

[7] W. Liu, F. Cao, L. Chang, Z. Zhang and J. Zhang, , Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy, Corros. Sci. 51 (2009) 1334-1343.

DOI: 10.1016/j.corsci.2009.03.018

Google Scholar

[8] G.Y. Lin, Y.X. Zhou and J.H. Zeng, Influence of rare earth element on corrosion behavior of Al-brass in marine water, J. Rare Earth 29 (2011) 638-644.

DOI: 10.1016/s1002-0721(10)60513-3

Google Scholar

[9] A.K. Mishra and R. Balasubramaniam, Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides, Corros. Sci. 49 (2007) 1027-1044.

DOI: 10.1016/j.corsci.2006.06.026

Google Scholar

[10] F. Yu, G.H. Wu and C.Q. Zhai, Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy, Mate. Sci. Eng. A 433 (2006) 208–215.

DOI: 10.1016/j.msea.2006.06.109

Google Scholar

[11] Q. Shi, F. Liang and B. Cheadle, Electrochemical behaviors of quad-layer aluminum brazing sheet composite for automotive applications, Corrosion 60 (2004) 492-500.

DOI: 10.5006/1.3299245

Google Scholar

[12] P. Mallesham, A.A. Gokhale and A. Dutta, Interface microstructure and bond shear strength of AA8090/AA7072 roll clad sheets, J. Mater. Sci. Lett. 22 (2003) 1793-1795.

DOI: 10.1023/b:jmsl.0000005423.90152.a6

Google Scholar

[13] Z.X. Liu, Z.J. Li, M.X. Wang and Y.G. Weng, Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys, Mater. Sci. Eng. A 484 (2008) 120-122.

DOI: 10.1016/j.msea.2006.09.166

Google Scholar

[14] B. Biljana, B. Jelena, A.P. Zagorka, R. Marko and B. Llija, The effect of T4 heat treatment on the microstructure and corrosion behaviour of Zn27Al1.5Cu0.02Mg alloy, Corr. Sci. 23 (2011) 409-417.

Google Scholar

[15] X.L. Zhang, The effect of Zn on the microstructure and mechanical properties of Al-Si-Cu-Mg, Master thesis, Shenyang University of Technology, 2008.

Google Scholar

[16] C.N. Cao, Principles of Electrochemistry of Corrosion, 3rd edition, Chemical Industry Press, Beijing, 2008, pp.1-100.

Google Scholar

[17] J.L. Wang, J. Yang, Y.M. Wu, H.J. Zhang and L.M. Wang, Microstructures and mechanical properties of as-cast Mg-5Al-0.4Mn-xNd (x=0, 1, 2, 4) alloys, Mater. Sci. Eng. A 472 (2008) 332-337.

DOI: 10.1016/j.msea.2007.03.036

Google Scholar

[18] G.M. Scamans, N.J.H. Holroyd and C.D.S. Tuck, The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys, Corr. Sci. 27 (1987) 329-347.

DOI: 10.1016/0010-938x(87)90076-x

Google Scholar

[19] R.Z. Zhu, Society of American Corrosion Engineering, Metallurgical Industry Press, Beijing 1987, pp.50-90.

Google Scholar

[20] M. Bethencourt, F.J. Botana, M.A. Cauqui and M. Marcos, Protection against corrosion in marine environments of AA5083 Al–Mg alloy by lanthanide chlorides, J. Alloys. Compd, 250 (1997) 455–60.

DOI: 10.1016/s0925-8388(96)02826-5

Google Scholar