An Eigenexpansion Method in 2D Viscoelastic Materials

Article Preview

Abstract:

The two-dimensional viscoelastic solid is considered in symplectic system. The general solutions of the governing equations include zero eigensolutions and non-zero eigensolutions. Zero eigensolutions can describe all the Saint-Venant problems, and non-zero ones are local effect solutions. Via this analytical approach, the final solution of the problem can be expressed by the linear combination of the general eigensoutions. In this paper, the local effects are described by employing this analytical approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-176

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.Z. Xu and J.P. Hou: Mech. Time-Depend. Mat. Vol. 15 (2011), p.29

Google Scholar

[2] J. Minster and Z. Novák: Mech. Time-Depend. Mat. Vol. 15 (2011), p.317

Google Scholar

[3] M. Sasso, G. Palmieri and D. Amodio: Mech. Time-Depend. Mat. Vol. 15 (2011), p.367

Google Scholar

[4] Y.M. Fu, Y. Huang, and S.Q. Huang: Arch. Appl. Mech. Vol. 81 (2011), p.1075

Google Scholar

[5] V.M. Levin and M.G. Markov: Int. J. Eng. Sci. Vol. 49 (2011), p.140

Google Scholar

[6] L.W. Meyer and T. Halle: Mech. Time-Depend. Mat. Vol. 15 (2011), p.327

Google Scholar

[7] M. Kroon: Mech. Time-Depend. Mat. Vol. 15 (2011), p.389

Google Scholar

[8] M. Johlitz and S. Diebels: Arch. Appl. Mech. Vol. 81 (2011), p.1333

Google Scholar

[9] M. Bîrsan and H. Altenbach: Arch. Appl. Mech. Vol. 81 (2011), p.1365

Google Scholar

[10] C. Chazal and R. M. Pitti: Mech. Time-Depend. Mat. Vol. 15 (2011), p.239

Google Scholar

[11] L. Bardella and A. Belleri: Mech. Time-Depend. Mat. Vol. 15 (2011), p.255

Google Scholar

[12] F.L. Wen and Y.L. Shen: Mech. Time-Depend. Mat. Vol. 15 (2011), p.277

Google Scholar

[13] T. Sakai and S. Somiya: Mech. Time-Depend. Mat. Vol. 15 (2011), p.293

Google Scholar

[14] V.M. Levin and M.G. Markov: Int. J. Eng. Sci. Vol. 49 (2011), p.140

Google Scholar

[15] D. Shahmirzadi and A. H. Hsieh: Mech. Time-Depend. Mat. Vol. 15 (2011), p.105

Google Scholar

[16] H.R.T. Jahromi and M. F. Webster: Mech. Time-Depend. Mat. Vol. 15 (2011), p.181

Google Scholar

[17] A. A. Qaiser and J. Price: Mech. Time-Depend. Mat. Vol. 15 (2011), p.41

Google Scholar

[18] N. Boualem and Z. Sereir: Mech. Time-Depend. Mat. Vol. 15 (2011), p.51

Google Scholar

[19] L. Geng, R. Ren, Y. Zhong and Q. Xu: Time-Depend. Mat. Vol. 15 (2011), p.73

Google Scholar

[20] T. Yun and Y.R. Kim: Mech. Time-Depend. Mat. Vol. 15 (2011), p.89

Google Scholar

[21] M. Hirsekorn, F. Petitjean and A. Deramecourt: Mech. Time-Depend. Mat. Vol. 15 (2011), p.139

Google Scholar

[22] M. Coulibaly and H. Sabar: Arch. Appl. Mech. Vol. 81 (2011), p.345

Google Scholar

[23] M. Shariyat: Arch. Appl. Mech. Vol. 81 (2011), p.1253

Google Scholar

[34] E. J. Sapountzakis and A. E. Kampitsis: Arch. Appl. Mech. Vol. 81 (2011), p.1833

Google Scholar

[25] J. Schröder, D. Balzani and D. Brands: Arch. Appl. Mech. Vol. 81 (2011), p.975

Google Scholar

[26] H.L. Cheng, J. Wang and Z.P. Huang: Mech. Time-Depend. Mat. Vol. 14 (2010), p.261

Google Scholar

[27] M. Suter and G.S. Benipal: Mech. Time-Depend. Mat. Vol. 14 (2010), p.291

Google Scholar

[28] D.A. Siginer: Int. J. Eng. Sci. Vol. 49 (2011), p.443

Google Scholar

[29] M.H. Ghayesh and N. Moradian: Arch. Appl. Mech. Vol. 81 (2011), p.781

Google Scholar

[30] Y.A. Zhuk, I.A. Guz and C.M. Sands: Arch. Appl. Mech. Vol. 81 (2011), p.215

Google Scholar

[31] Y. Huangfu and F. Chen: Arch. Appl. Mech. Vol. 81 (2011), p.1231

Google Scholar

[32] J.M. Husson, F. Dubois and N. Sauvat: Mech. Time-Depend. Mat. Vol. 15 (2011), p.213

Google Scholar

[33] J. Brnic, G. Turkalj, M. Canadija, D. Lanc and S. Krscanski: Mech. Time-Depend. Mat. Vol. 15 (2011), p.213

DOI: 10.1007/s11043-011-9137-x

Google Scholar

[34] A. Loghman, A.G. Arani, S.M.A. Aleayoub: Mech. Time-Depend. Mat. Vol. 15 (2011), p.353

Google Scholar

[35] S.O.S. Echendu, F. Belblidia, H.R. Tamaddon-Jahromi and M.F. Webster: Mech. Time-Depend. Mat. Vol. 15 (2011), p.407

DOI: 10.1007/s11043-011-9161-x

Google Scholar

[36] A. D. Drozdov: Mech. Time-Depend. Mat. Vol. 14 (2010), p.411

Google Scholar

[37] J. Minster, O. Blahova, J. Lukes and J. Nemecek: Time-Depend. Mat. Vol. 14 (2010), p.243

Google Scholar

[38] M. Suter, G.S. Benipal: Time-Depend. Mat. Vol. 14 (2010), p.277

Google Scholar

[39] J. Sorvari and J. Hämäläinen: Time-Depend. Mat. Vol. 14 (2010), p.307

Google Scholar

[40] X.C. Li and W.A. Yao: J. Appl. Math. Vol. 2011 (2011), p.1

Google Scholar

[41] W.X. Zhang: Arch. Appl. Mech. Vol. 79 (2009), p.793

Google Scholar

[42] W.X. Zhang, W.H. Cui, Z.R. Xiao and X.S. Xu: Int. J. Eng. Sci. Vol. 48 (2010), p.727

Google Scholar

[43] W.X. Zhang, X.S. Xu and F. Yuan: Arch. Appl. Mech. Vol. 80 (2010), p.829

Google Scholar

[44] W.X. Zhang and X.S. Xu: Int. J. Eng. Sci. Vol. 50 (2012), p.56

Google Scholar