Inversion Algorithm Based on the Unscented Kalman Filter for Inverse Heat Conduction Problems

Article Preview

Abstract:

The inverse heat conduction problems (IHCP) analysis method provides a promising approach for acquiring the thermal physical properties of materials, the boundary conditions and the initial conditions from the known temperature measurement data, where the efficiency of the inversion algorithms plays a crucial role in real applications. In this paper, an inversion model that simultaneously utilizes the process evolution information of the objects to be estimated and the measurement information is proposed. The original IHCP is formulated into a state-space problem, and the unscented Kalman filter (UKF) method is developed for solving the proposed inversion model. The implementation of the proposed method does not require the gradient vector, the Jacobian matrix or the Hessian matrix, and thus the computational complexity is decreased. Numerical simulations are implemented to evaluate the feasibility of the proposed algorithm. For the cases simulated in this paper, satisfactory results are obtained, which indicates that the proposed algorithm is successful in solving the IHCP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-482

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Wang, N. Zabaras, A Bayesian inference approach to the inverse heat conduction problem, International Journal of Heat and Mass Transfer 47 (2004) 3927-3941.

DOI: 10.1016/j.ijheatmasstransfer.2004.02.028

Google Scholar

[2] P.C. Tuan, S.C. Lee, W.T. Hou, An efficient on-line thermal input estimation method using Kalman filter and recursive least square algorithm, Inverse Problem in Engineering 5 (1997) 309-333.

DOI: 10.1080/174159797088027665

Google Scholar

[3] C.C. Ji, P.C. Tuan, H.Y. Jang, A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation, International Journal of Heat and Mass Transfer 40 (1997) 2081-2096.

DOI: 10.1016/s0017-9310(96)00289-x

Google Scholar

[4] N. Daouas, M.S. Radhouani, Versión étendue du filtre de Kalman discret appliquée à un problème inverse de conduction de chaleur non linéaire, International Journal of Thermal Sciences 39 (2000) 191-212.

DOI: 10.1016/s1290-0729(00)00239-8

Google Scholar

[5] T. Liu, B. Liu, P.X. Jiang, Y.W. Zhang, H. Li, A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline, Applied Thermal Engineering 30 (2010) 1574-1579.

DOI: 10.1016/j.applthermaleng.2010.03.011

Google Scholar

[6] C.H. Huang, S.P. Wang, A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method, International Journal of Heat and Mass Transfer 42 (1999) 3387-3403.

DOI: 10.1016/s0017-9310(99)00020-4

Google Scholar

[7] J.A.M. García, J.M.G. Cabeza, A.C. Rodríguez, Two-dimensional non-linear inverse problem heat conduction problem based on the singular value decomposition, International Journal of Thermal Sciences 48 (2009) 1081-1093.

DOI: 10.1016/j.ijthermalsci.2008.09.002

Google Scholar

[8] K.W. Kim, S.W. Baek, Inverse radiation-conduction design problem in a participating concentric cylindrical medium, International Journal of Heat and Mass Transfer 50 (2007) 2828-2837.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.056

Google Scholar

[9] S. Deng, Y. Hwang, Applying neural networks to the solution of forward and the inverse heat conduction problems, International Journal of Heat and Mass Transfer 49 (2006) 4732-4750.

DOI: 10.1016/j.ijheatmasstransfer.2006.06.009

Google Scholar

[10] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, V.H. Winston & Sons Washington, 1977.

Google Scholar

[11] O.M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, New York, 1994.

Google Scholar

[12] J.V. Beck, B. Blackwell, C.R. Clair, Inverse Heat Conduction: Ill-posed Problems, Wiley, New York, 1985.

Google Scholar

[13] S.K. Kim, W.I. Lee, Solution of inverse heat conduction problems using maximum entropy method, International Journal of Heat and Mass Transfer 45 (2002) 381-391.

DOI: 10.1016/s0017-9310(01)00155-7

Google Scholar

[14] G.R. Liu, J.H. Lee, A.T. Patera, Z.L. Yang, K.Y. Lam, Inverse identification of thermal parameters using reduced-basis method, Computer Methods in Applied Mechanics and Engineering 194 (2005) 3090-3107.

DOI: 10.1016/j.cma.2004.08.003

Google Scholar

[15] C.S. Liu, A self-adaptive LGSM to recover initial condition or heat source of one-dimensional heat conduction Eq. by using only minimal boundary thermal data, International Journal of Heat and Mass Transfer 54 (2011) 1305-1312.

DOI: 10.1016/j.ijheatmasstransfer.2010.12.013

Google Scholar

[16] G. Wang, L. Zhu, H. Chen, A decentralized fuzzy inference method for solving the two-dimensional steady inverse heat conduction problem of estimating boundary condition, International Journal of Heat and Mass Transfer 54 (2011) 2782-2788.

DOI: 10.1016/j.ijheatmasstransfer.2011.01.032

Google Scholar

[17] K.H. Lee, S.W. Baek, K.W. Kim, Inverse radiation analysis using repulsive particle swarm optimization algorithm, International Journal of Heat and Mass Transfer 51 (2008) 2772-2783.

DOI: 10.1016/j.ijheatmasstransfer.2007.09.037

Google Scholar

[18] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer, Taylor & Francis, New York, 2000.

Google Scholar

[19] R.T. Lin, Theory and Methods on the Heat Conduction, Tianjin University Press, Tianjin, 1992.

Google Scholar

[20] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE 92 (2004) 401-422.

DOI: 10.1109/jproc.2003.823141

Google Scholar

[21] S. Julier, J. Uhlmann, H.F. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control 45 (2000) 477-482.

DOI: 10.1109/9.847726

Google Scholar

[22] E.A. Wan, R. Merwe, The unscented Kalman filter for nonlinear estimation, Adaptive System for Signal Processing, Communications and Control Symposium (2000) 153-158.

DOI: 10.1109/asspcc.2000.882463

Google Scholar

[23] C. Eberle, C. Ament, The unscented Kalman filter estimation the plasma insulin from glucose measurement, BioSystem 103 (2011) 67-72.

DOI: 10.1016/j.biosystems.2010.09.012

Google Scholar

[24] J.H. Gove, D.Y. Hollinger, Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange, Journal of Geophysical Research 111 (2006) 1-21.

DOI: 10.1029/2005jd006021

Google Scholar

[25] S. Haykin, Kalman Filter and Neural Networks, John Wiley & Sons, New York, 2001.

Google Scholar

[26] S. Kolas, B.A. Foss, T.S. Schei, Constrained nonlinear state estimation based on the UKF approach, Computers and Chemical Engineering 33 (2009) 1386-1401.

DOI: 10.1016/j.compchemeng.2009.01.012

Google Scholar