A New Type of Function Projective Synchronization of Nonautonomous Chaotic System

Article Preview

Abstract:

The function projective synchronization of nonautonomous chaotic system with a new type of scaling function is investigated. The scaling function factor discussed in this paper is a new kind of function which contains the state variable. Obviously, this kind of scaling function is complicated than former ones. Based on modified active control, the general method of this synchronization is proposed. In numerical simulation, the heavy symmetric gyroscope system is taken as the instance to demonstrate the validity of the controller and the feasibility of the proposed synchronization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

590-595

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Vanecek, S. Celikovsky, Control system: from linear analysis to synthesis of chaos, London: Prentice-Hall, 1996.

Google Scholar

[2] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[3] Wu Xian yong, Zhang Hongmin, Synchronization of two hyperchaotic systems via adaptive control, Chaos, Solitons & Fractals 39 (2009) 2268–2273.

DOI: 10.1016/j.chaos.2007.06.100

Google Scholar

[4] Sachin Bhalekar, Varsha Daftardar-Gejji, Synchronization of different fractional order chaotic systems using active control, Comm. Non. Sci. Num.. Simu.15 (2010) 3536-3546.

DOI: 10.1016/j.cnsns.2009.12.016

Google Scholar

[5] M.G. Rosenblum, A.S. Pikovsky, J. kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett. 76 (1996) 1804–1807.

DOI: 10.1103/physrevlett.76.1804

Google Scholar

[6] L. Kocarev, U. Parlitz, Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett. 76 (1996) 1816–1819.

DOI: 10.1103/physrevlett.76.1816

Google Scholar

[7] R. Mainieri, J. Rehacek, Projective synchronization in three-dimensioned chaotic systems, Phys. Rev. Lett. 82 (1999) 3042–3045.

DOI: 10.1103/physrevlett.82.3042

Google Scholar

[8] D. Xu, Control of projective synchronization in chaotic systems, Phys. Rev. E 63 (2001) 27201–27204.

Google Scholar

[9] Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Int. J. Mod. Phys. C 18 (5) (2007) 883–888.

DOI: 10.1142/s0129183107010607

Google Scholar

[10] Zhenbo Li, Xiaoshan Zhao, Generalized projective synchronization of chaotic systems via modified active control, Acta Phys. Sin. Vol. 60, No. 5 (2011) 050508 .

DOI: 10.7498/aps.60.050508

Google Scholar

[11] Her-Terng Yau, Generalized projective chaos synchronization of gyroscope systems subjected to dead-zone nonlinear input, Phy. Lett. A 372 (2008) 2380-2385.

DOI: 10.1016/j.physleta.2007.11.047

Google Scholar