The Eigenvalue Problem and Saint-Venant Decay Rate for a Nonhomogeneous Semi-Infinite Strip in Plane Strain

Article Preview

Abstract:

The eigenvalue problem referring to a nonhomogeneous semi-infinite strip in plane strain is investigated here, by using the analogous methodology proposed by Papkovich and Fadle in homogeneous plane problem. Two types of nonhomogeneity are considered: (i) the modulus varies with the thickness coordinate exponentially, (ii) it varies with the length coordinate exponentially. The eigenvalues for these two cases are obtained by numerical calculation. By considering the smallest positive eigenvalue, the Saint-Venant Decay rate of the problem is estimated, which indicates material nonhomogeneity can have a significant influence on the Saint-Venant decay rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 706-708)

Pages:

1822-1826

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Papkovich: Über eine form der lösung des biharmonischen problem für das rechteck. Acad. Sci. USSR. Vol.27 (1940), p.337

Google Scholar

[2] J. Fadle,: Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Österr. Ing. Arch. Vol. 11 (1941), p.125–149

DOI: 10.1007/bf02084699

Google Scholar

[3] G. Horvay: Biharmonic eigenvalue problem of the semi-infinite strip. Quart. Appl. Math. Vol. 15 (1957), p.65–81

DOI: 10.1090/qam/85734

Google Scholar

[4] F.A. Gaydon, W.M. Shepherd: Generalized plane stress in a semi-infinite strip under arbitrary end-load. Proc. Roy. Soc. Lond. A. Vol. 1385 (1964), p.184–206

DOI: 10.1098/rspa.1964.0177

Google Scholar

[5] M.W. Johnson, R.W. Little: The semi-infinite strip. Quart. Appl. Math. Vol.22 (1965), p.335–344

DOI: 10.1090/qam/187479

Google Scholar

[6] C.O. Horgan: Recent developments concerning Saint-Venant's principle: a second update. Appl. Mech. Rev. Vol. 49 (1996), p.101–111

Google Scholar

[7] M.R. Scalpato, C.O. Horgan: Saint Venant decay rates for an isotropic inhomogeneous linearly elastic solid in anti-plane shear. J. Elast. Vol. 48 (1997), p.145–166

Google Scholar

[8] A.M. Chan, C.O. Horgan: End effects in anti-plane shear for an inhomogeneous isotropic linearly elastic semi-infinite strip. J. Elast. Vol. 51 (1998), p.227–242

Google Scholar

[9] C.O. Horgan, R. Quintanilla: Saint Venant end effects in anti-plane shear for functionally graded linearly elastic materials. Math. Mech. Solids. Vol. 6 (2001), p.115–132

DOI: 10.1177/108128650100600201

Google Scholar