Strain-Rate Characteristic of the Brush Plated Nanocrystalline Cu

Article Preview

Abstract:

In this study, the pure nanocrystalline Cu columns were fabricated by the brush electrodeposition technique at 20°C and at different deposition current densities in the range of 200 240 mA cm-2. The columns shows high strain rate sensitivity in the room temperature compressive test. In the tested strain rate range, the strength of the nanocrystalline Cu at 2% plastic strain increases from 660 MPa to 1500 MPa. The nanocrystalline Cu exhibits obvious flow softening behavior at high strain level, and the degree of the softening is related to the strain rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 706-708)

Pages:

262-265

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhao, C. Bao, R. Feng, Z. Chen: Ultrason. Sonochem. 2 (1995) 99.

Google Scholar

[2] Y.A. Yang, Y.B. Wei, B.H. Loo, J.N. Yao: J. Electroanal. Chem. 462 (1999) 259.

Google Scholar

[3] Y. Lantasov, R. Palmans, K. Maex: Microelectron. Eng. 50 (2000) 441.

Google Scholar

[4] R. Liu, W. Zong, C. Gao, Z. Chi, L. Zhang: Spectrochim. Acta A. 68 (2007) 150.

Google Scholar

[5] X. Han, W. Wu, Y. Li, Z. Li, Y. Hao, G. Yan: Thin Solid Films. 515 (2006) 2607.

Google Scholar

[6] H. Zhang, Z. Jiang, X. Liu, J. Lian: Surf. Rev. Lett. 13 (2006) 471.

Google Scholar

[7] S.P. Chong, Y.C. Ee, Z. Chen, S.B. Law: Surf. Coat. Technol. 198 (2005) 287.

Google Scholar

[8] N. Rajasekaran, S. Mohan: Corrosion Science. 51(2009) 2139.

Google Scholar

[9] J. Karch, R. Birringer, H. Gleiter: Nature (London). 330 (1987) 556.

Google Scholar

[10] A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter: Scr. Metall. 23 (1989) 1679.

Google Scholar

[11] J. R. Trelewicz and C. A. Schuh: Appl. Phys. Lett. 93 (2008) 171916.

Google Scholar

[12] G.Y. Wang, J.S. Lian, Z.H. Jiang, L.Y Qin, Q. Jiang: J.Appl.Phys.106 (2009) 086105.

Google Scholar

[13] Y. J. Li, W. Blum, F. Breutinger: Mater. Sci. Eng. A. 585 (2004) 387.

Google Scholar

[14] F. Tang, J. M. Schoenung: Mater. Sci. Eng. A. 493 (2008) 101.

Google Scholar

[15] E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, S. Suriñach, M.D. Baró, J. Sort: Surf. Coat. Technol. 205 (2011) 5285.

DOI: 10.1016/j.surfcoat.2011.05.047

Google Scholar

[16] Z.H. Jiang, H.Z. Zhang, C.D. Gu, Q. Jiang, and J.S. Lian, J. Appl. Phys. 104 (2008) 053505.

Google Scholar

[17] Z.H. Jiang, X.L. Liu, G.Y. Li, Q. Jiang, J.S. Lian: Appl Phys Lett. 88 (2006) 143115.

Google Scholar

[18] L. Lu, M. L. Sui, K. Lu: Science. 287 (2000) 1463.

Google Scholar

[19] B. Cai, Q. P. Kong, L. Lu, K. Lu: Scripta Materialia. 41 (1999) 755.

Google Scholar

[20] N. Rajasekaran, S. Mohan: J Appl Electrochem. 102 (2009) 1231.

Google Scholar

[21] K.R. Murali, S. Kumaresan: Chalcogenide Letters. 6 (2009) 17.

Google Scholar