Graphene-Silicon Schottky Junction Fabricating by Laser Reduced Graphene Oxides

Article Preview

Abstract:

Reported here is a new method of fabricating the graphene/silicon schottky junction. Using a femtosecond laser, graphene oxides are reduced to graphene and behave a metal. The junction of reduced GO and Si shows rectifying behavior indicating that the junction is schottky junction. Take advantage of the laser fabricating method, one can get reduced GO at any position on the substrate. Xps spectra shows that the reduced GO has only 12% oxygen content, and it is truly have a good conductivity similar to metal. This method opens a new effective way to graphene-based micro nano electronics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-142

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004 , 306 (5696), 666-669

DOI: 10.1126/science.1102896

Google Scholar

[2] Stauber, T.; Peres, N. M. R.; Guinea, F. Phys. Rev. B 2007 , 76 (20), 205423.

Google Scholar

[3] Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S.Nano Res. 2008 , 1 (5), 361–394.

DOI: 10.1007/s12274-008-8043-2

Google Scholar

[4] Ouyang, F. P.; Wang, H. Y.; Li, M. J.; Xiao, J.; Xu, H. Acta Phys.Sin. 2008 , 57 (11), 7132–7138.

Google Scholar

[5] Geim, A. K. Science 2009 , 324 (5934), 1530-1534.

Google Scholar

[6] Russo, S.; Craciun, M. F.; Yamamoto, M.; Morpurgo, A. F.;Tarucha, S.Physica E 2010 , 42 (4), 677–679.

Google Scholar

[7] Areshkin, D. A.; White, C. T. Nano Lett.2007, 7, 3253–3259.

Google Scholar

[8] Liu, G.; Velasco, J.; Bao, W. Z.; Lau, C. N. Appl. Phys. Lett. 2008 ,92 (20), 203103.

Google Scholar

[9] Williams, J. R.; DiCarlo, L.; Marcus, C. M. Science 2007 , 317 (5838), 638-641

Google Scholar

[10] Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A.Phys. Rev. Lett. 2008 , 101 (2), 026801.

Google Scholar

[11] Yoon, Y.; Fiori, G.; Hong, S.; Iannaccone, G.; Guo, J. IEEE Trans. Electron Devices 2008 , 55 (9), 2314 -2323.

DOI: 10.1109/ted.2008.928021

Google Scholar

[12] Jimenez, D. Nanotechnology 2008 , 19 (34), 345204.

Google Scholar

[13] Tongay, S.; Schumann, T.; Hebard, A. F. Appl. Phys. Lett. 2009 ,95 (22), 222103-222105.

Google Scholar

[14] Chun-Chung Chen, Mehmet Aykol, Chia-Chi Chang, A. F. J. Levi, and Stephen B. Cronin, Nano Lett.2011, 11, 1863–1867

Google Scholar

[15] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282

DOI: 10.1038/nature04969

Google Scholar

[16] Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.;Sun, H. B.; Xiao, F. S. Nano Today 2010 , 5,15− 20.

Google Scholar

[17] Li Guo, Rui-Qiang Shao, Yong-Lai Zhang, Hao-Bo Jiang, Xian-Bin Li, Sheng-Yi Xie, Bin-Bin Xu, Qi-Dai Chen, Jun-Feng Song, and Hong-Bo Sun; J. Phys. Chem. C,  2012, 116 (5), 3594–3599

DOI: 10.1109/cleopr.2013.6600173

Google Scholar

[18] Kastenmeier, B. E. E.; Matsuo, P. J.; Beulens, J. J.; Oehrlein, G. S. J. Vac. Sci. Technol., A 1996 , 14 (5), 2802 -2813.

Google Scholar

[19] Lee, H. Y.; Kim, D. W.; Sung, Y. J.; Yeom, G. Y. Jpn. J. Appl. Phys., Part 1 2005 , 44 (3), 1445-1449.

Google Scholar

[20] Zhang, Y. L.; Chen, Q. D.; Xia, H.; Sun, H. B. Nano Today 2010 , 5, 435 −448.

Google Scholar

[21] Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Nature 2001 , 412, 697−698.

Google Scholar