MnO2/Graphene Nanocomposite for Use in High Performance Lithium-Ion Batteries

Article Preview

Abstract:

A facile hydrothermal route has been developed to prepare MnO2/graphene nanocomposites and MnO2 nanoparticles are uniformly anchored on graphene nanosheets. The composite were studied as the anode material for lithium-ion batteries. The surface of graphene is modified by MnO2 nanoparticles which are 10-30 nm in size and homogeneously anchor on graphene sheets. The composite exhibits superior lithium battery performance with higher reversible capacity and better cycling performance. The reversible capacity is up to 781.5 mAh g-1 at a current of 100 mA g-1 and maintains 96% after 50 cycles. The enhanced lithium storage performance is due to the synergetic effect of graphene and MnO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-160

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Li, Z. Wang and L. Chen: Adv. Mater. Vol. 21 (2009), p.4593.

Google Scholar

[2] L.-X. Yuan, Z.-H. Wang and W.-X. Zhang: Energy Environ. Sci. Vol. 4 (2011), p.269.

Google Scholar

[3] L. Zhao, Y.-S. Hu and H. Li: Adv. Mater. Vol. 23 (2011), p.1385.

Google Scholar

[4] C.K. Chan, H. Peng and G. Liu: Nat. Nanotechnol. Vol. 3 (2008), p.31.

Google Scholar

[5] W.M. Zhang, J.S. Hu and Y.G. Guo: Adv. Mater. Vol. 20 (2008), p.1160.

Google Scholar

[6] L. Wang, C.X. Ding and L.C. Zhang: J. Power. Sources Vol. 195 (2010), p.5052.

Google Scholar

[7] P. Poizot, S. Laruelle and S. Grugeon: Nature Vol. 407 (2000), p.496.

Google Scholar

[8] A.L.M. Reddy, M.M. Shaijumon and S.R. Gowda: Nano. Lett. Vol. 9 (2009), p.1002.

Google Scholar

[9] W. Xiao, J.S. Chen and Q. Lu: J. Phys. Chem. C Vol. 114 (2010), p.12048.

Google Scholar

[10] M. Liang and L. Zhi: J. Mater. Chem. Vol. 19 (2009), p.5871.

Google Scholar

[11] G. Zhou, D.-W. Wang and F. Li: Chem. Mater. Vol. 22 (2010), p.5306.

Google Scholar

[12] G. Wang, X. Shen and J. Yao: Carbon Vol. 47 (2009), p.2049.

Google Scholar

[13] P. Guo, H. Song and X. Chen: Electrochem. Commun. Vol. 11 (2009), p.1320.

Google Scholar

[14] J . T. Robinson, F.K. Perkins and E.S. Snow: Nano Lett. Vol. 8 (2008), p.3137.

Google Scholar

[15] M. Pumera: Energy Environ. Sci. Vol. 4 (2011), p.668.

Google Scholar

[16] Y. Sun, Q. Wu and G. Shi: Energy Environ. Sci. Vol. 4 (2011), p.1113.

Google Scholar

[17] M.D. Stoller, S. Park and Y. Zhu: Nano Lett. Vol. 8 (2008), p.3498.

Google Scholar

[18] C. Ataca, E. Akturk and S. Ciraci: Appl. Phys. Lett. Vol. 93 (2008), p.043123.

Google Scholar

[19] X. Wang, X. Zhou and K. Yao: Carbon Vol. 49 (2011), p.133.

Google Scholar

[20] H. Wang, L.-F. Cui and Y. Yang: J. Am. Chem. Soc. Vol. 132 (2010), p.13978.

Google Scholar

[21] N. Li, G. Liu and C. Zhen: Adv. Funct. Mater. Vol. 21 (2011), p.1717.

Google Scholar