First-Principle Calculations for Magnetism of Mn-Doped Graphene

Article Preview

Abstract:

Mn doped graphene-based dilute magnetic semiconductors (DMS) are investigated using the first-principle calculation based on density functional theory. In this paper, the Mn-C bond length, formation energy and magnetic moment are calculated in different doping systems and their density of states is made a detailed analysis. It is found that Mn-doped graphene has strong ferromagnetic properties and the magnetic moments of graphene supercells are different with the impurity concentrations. These supercells of a Mn atom substituting a C atom are increasingly stable with extending cells and the 11×11 supercell possesses the biggest magnetic moment of 3.8μB in these systems. The analysis of the density of states indicates the magnetic properties of Mn-doped graphene derive from the p-d exchange mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-187

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Y. Han, B. Özyilmaz, Y. B. Zhang and P. Kim: Phys. Rev. Lett. Vol. 98 (2007), p.206805

Google Scholar

[2] A. Rycerz, J. Tworzydlo and C. W. J. Beenakker: Nat. Phys. Vol. 3 (2007), p.172

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov: Science Vol. 306 (2004), p.666

DOI: 10.1126/science.1102896

Google Scholar

[4] B. Uchoa, C. Y. Lin and A. H. Castro Neto: Phys. Rev. B Vol. 77 (2008), p.35420

Google Scholar

[5] K. M. McCreary, K. Pi and R. K. Kawakami: Appl. Phys. Lett. Vol. 98 (2011), p.192101

Google Scholar

[6] B. Xu, Y. H. Lu, Y. P. Feng and J. Y. Lin: Appl. Phys. Vol. 108 (2010), p.073711

Google Scholar

[7] E. J. G. Santos, D. Sánchez-Portal and A. Ayuela: Phys. Rev. B Vol. 81 (2010), p.125433

Google Scholar

[8] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio, B. Johansson and G. Gehring: Nat. Mater. Vol. 3 (2003), p.673

Google Scholar

[9] Y. L. Mao, J. M. Yuan and J. X. Zhong: J. Phys.: Condens. Matter Vol. 20 (2008), p.115209

Google Scholar

[10] Narjes Gorjizadeh and Yoshiyuki Kawazoe: Materials Transactions Vol. 49 (2008), p.2445

Google Scholar

[11] Y. B. Zhang, M. H. N. Assadi and S. Li: J. Phys.: Condens. Matter Vol. 21 (2009), p.175802

Google Scholar

[12] X. C. Liu, Z. H. Lu and F. M. Zhang: Chin. Phys. B Vol. 19 (2010), p.027502

Google Scholar

[13] A. K. Geim and K. S. Novoselov: Nat. Mater. Vol. 6 (2007), p.183

Google Scholar

[14] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864

Google Scholar

[15] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133

Google Scholar

[16] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865

Google Scholar

[17] B. G. Pfrommer, M. Cote, S. G. Louie, M. L.Cohen: J. Comput. Phys. Vol. 131 (1997), p.233

Google Scholar

[18] G. Kresse and D. Joubert: Phys. Rev. B Vol. 59 (1999), p.1758

Google Scholar

[19] M. Wu, C. Cao and J. Z. Jiang: New Journal of Physics Vol.12 (2010), p.063020

Google Scholar