[1]
Scharstein D, Szeliski R.A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms [J].International Journal of Computer Vision, 2002, 47(1):7-42.
DOI: 10.1109/smbv.2001.988771
Google Scholar
[2]
SZELISKI R,ZABIH R,SCHARSTEIN D,et al. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors [J] .IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (6) :1068-1080 .
DOI: 10.1109/tpami.2007.70844
Google Scholar
[3]
Qingxiong Yang. A non-local cost aggregation method for stereo matching [J]. Computer Vision and Pattern Recognition (CVPR), pages: 1402 – 1409, 2012.
DOI: 10.1109/cvpr.2012.6247827
Google Scholar
[4]
Ansari, M.E. A real-time spatio-temporal stereo matching for road applications [J]. Intelligent Transportation Systems (ITSC), pages: 1483 – 1488, 2011.
DOI: 10.1109/itsc.2011.6082875
Google Scholar
[5]
Gu Z, Su X Y,Liu Y K, et al. Local stereo matching with adaptive support-weight,rank transform and disparity calibration [J]. Pattern Recognition Letters, 2008, 29 (9):1230-1235.
DOI: 10.1016/j.patrec.2008.01.032
Google Scholar
[6]
Zhang G F, Jia J Y, Wong T T, et al. Consistent depth maps recovery from a video sequence [J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (6):974-988.
DOI: 10.1109/tpami.2009.52
Google Scholar
[7]
Tomohiro, N. Stereo matching based on disparity propagation using cellular evolutionary neural networks [J]. Computers & Informatics (ISCI), Pages: 34 – 39, 2012.
DOI: 10.1109/isci.2012.6222663
Google Scholar
[8]
Nalpantidis L, Gasteratos A. Biologically and psychophysically inspired adaptive support weights algorithm for stereo correspondence[J] .Robotics and Autonomous Systems, 2010, 58 (5) : 457-464 .
DOI: 10.1016/j.robot.2010.02.002
Google Scholar