[1]
Marial, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV (2009)
DOI: 10.1109/iccv.2009.5459452
Google Scholar
[2]
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)
DOI: 10.1109/cvpr.2009.5206757
Google Scholar
[3]
A.M. Bruckstein D.L. Donoho,and M.Elad:From sparse solutions of systems of equations to sparse modeling of signals and images.Society for Industrial and Applied Mathematics Review,vol.51(1)(2009), p.34–81
DOI: 10.1137/060657704
Google Scholar
[4]
J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma:Robust face recognition via sparse representation. IEEE Trans. On PAMI, vol. 31 ( 2009) ,p.210–227
DOI: 10.1109/tpami.2008.79
Google Scholar
[5]
B.Olshausen,D. Field,: Sparse coding with an overcomplete basis set: A strategy employed by v1, Vision Research, vol. 37(1997), pp.3311-3325.
DOI: 10.1016/s0042-6989(97)00169-7
Google Scholar
[6]
Ke Huang:SPARSE REPRESENTATIONS FOR IMAGE CLASSIFICATION [D], Michigan State University,(2007)
Google Scholar
[7]
S Mallat,Z Zhang:Matching pursuits with time-frequency dictionaries, IEEE Transaction on Signal Processing, vol.41(1993),p.3397–3415
DOI: 10.1109/78.258082
Google Scholar
[8]
M Elad,M Aharon, "Image denoising via learned dictionaries and sparse representation", IEEE ComputerVision and Pattern Recognition, New York, USA(2006)
DOI: 10.1109/cvpr.2006.142
Google Scholar