[1]
R. Duffin, A. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., Vol.(1952), pp.341-366.
DOI: 10.1090/s0002-9947-1952-0047179-6
Google Scholar
[2]
I. Daubechies, A. Groddmann, Y. Mayer, Painless nonorthogonal expansions, J. Math. Phys., Vol. (1986), pp.1271-1283.
Google Scholar
[3]
P. Casazza, J. Kovacevic, J. Kelner, Equal-norm tight frames with erasures, Adv. Comput. Math., Vol.(2003), pp.387-430.
Google Scholar
[4]
V. Goyal, J. Kovacevic, J. Kelner, Quantized frames expansions with erasures. Appl. Comput. Harmon. Anal., Vol. (2001), pp.203-233.
Google Scholar
[5]
B. Hassibi, B. Hochwald, A. Shokrollahi, W. Sweldens, Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory, Vol. (2001), pp.2335-2367.
DOI: 10.1109/18.945251
Google Scholar
[6]
I. Daubechies, Ten Lectures on Wavelets, in: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992.
DOI: 10.1006/jath.1994.1093
Google Scholar
[7]
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., Vol. (1988), pp.909-996.
DOI: 10.1002/cpa.3160410705
Google Scholar
[8]
S. Mallat, A theory for multiresolution signal decomposition; the wavelet representation, IEEE trans. on PAMI, Vol. (1989), pp.674-693.
DOI: 10.1109/34.192463
Google Scholar
[9]
K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, MA, 2001.
Google Scholar
[10]
S. Goh, Z. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal., Vol. (2006), pp.411-421.
DOI: 10.1016/j.acha.2005.09.006
Google Scholar