Mercury Reduction by Bacteria Isolated from Informal Mining Zones

Abstract:

Article Preview

The aim of this research was the selection of bacterial strains resistant to mercury, as well as to demonstrate their capacity to reduce mercury in solution when they are inoculated in pure and mixed cultures. Samples of soil from informal mining gold sites in Peru were collected and fifteen mercury resistant bacteria were isolated. Strains RM6, RM7, RM9, RM11, RM12 and RM13 were selected for their capacity to reduce mercury in solution. The six bacterial strains belong to the genus Pseudomonas. Inoculated in pure cultures, these strains reduce mercury in solution although in different percentages: RM9, RM11 an RM12 reduce 93% to 97% of the mercury, while strains RM6, RM7 y RM13 reduce 80% to 85%. The consortium of all six bacterial strains showed a mercury reduction of 84%. Approximately 91% of mercury in solution was reduced in 1 hour and this reaction was not associated to bacterial growth. Using specific primers, the merA gene was amplified from genomic DNA of the bacterial strains, which would suggest the activity of the mer operon as a mechanism of mercury resistance. Due to their ability to reduce mercury in solution, it is advisable to carry out more research on the selected strains since they could be useful in future bioremediation processes.

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini

Pages:

637-640

DOI:

10.4028/www.scientific.net/AMR.71-73.637

Citation:

J. Sánchez Dávila and J. Hurtado Custodio, "Mercury Reduction by Bacteria Isolated from Informal Mining Zones", Advanced Materials Research, Vols. 71-73, pp. 637-640, 2009

Online since:

May 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.