Effects of CaO Additions on the Structure and Dielectric Properties of Aluminoborosilicate Glasses

Article Preview

Abstract:

Glasses with compositions xCaO-(60-x)SiO2-5MgO-15Al2O3-20B2O3 (x=0, 3, 6 and 9 mol %) were prepared by conventional melting method. Fourier-transform infrared spectroscopy (FTIR) indicated that the addition of CaO converted trigonal boron ([B) to tetrahedral boron ([B). The glass transition temperatures (Tg) were determined using a differential scanning calorimetry (DSC). Tg increased with increasing CaO content. Thus, the addition of CaO instead of SiO2 strengthened the glass network. The dielectric εr and loss tanδ were measured for the MgO-B2O3-Al2O3-SiO2 glass system in the frequency range 103-105 Hz. The decrease in εr and tanδ could be attributed to the increase in the rigidity of the glass network.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Gomaa, H.A. Abo-Mosallam and H. Darwish: J Mater Sci: Mater Electron Vol. 20 (2009), p.507

Google Scholar

[2] I. Choi, J.G. Kim, D.G. Lee and I.S. Seo: Compos Sci Tachnol Vol. 71 (2011), p.1632

Google Scholar

[3] A. Sridhar, D.J. Van Dijk and R. Akkerman: Thin Solid Films Vol. 517 (2009), p.4633

Google Scholar

[4] Y.H. Yun and P.J. Bray: J. Non-Cryst. Solids Vol. 44 (1981), p.227

Google Scholar

[5] J. Zhong and P.J. Bray: J. Non-Cryst. Solids Vol 111 (1989), p.67

Google Scholar

[6] W.J. Dell, P.J. Bray and S.Z. Xiao: J. Non-Cryst. Solids Vol. 58 (1983), p.1

Google Scholar

[7] Y.H. Yun and P.J. Bray: J. Non-Cryst. Solids Vol. 27 (1978), p.363

Google Scholar

[8] M. Bengisu, R.K. Brow, E. Yilmaz, A. Mogus-Milankovic, and S.T. Reis, J. Non-Cryst. Solids Vol. 352 (2006), p.3668

Google Scholar

[9] D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. K. Singh and G. Bhikshamaiah: J. Non-Cryst. Solids Vol. 354 (2008), p.5573

DOI: 10.1016/j.jnoncrysol.2008.09.017

Google Scholar

[10] G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani and A. Pedone: J. Phys. Chem. B Vol. 113 (2009), p.10331

DOI: 10.1021/jp809805z

Google Scholar

[11] N.J. Clayden, S. Esposito, A. Aronne and P. Pernice: J. Non-Cryst. Solids Vol. 258 (1999), p.11

Google Scholar

[12] G.D. Chryssikos, M.S. Bitsis, J.A. Kapoutsis and E.I. Kamitsos: J. Non-Cryst. Solids Vol. 217 (1997), p.278

DOI: 10.1016/s0022-3093(97)00224-x

Google Scholar

[13] M. Bengisu, R.K. Brow, E. Yilmaz, A. Mogus-Milankovic and S.T. Reis, J. Non-Cryst. Solids Vol. 352 (2006), p.3668

Google Scholar

[14] D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. K. Singh and G. Bhikshamaiah: J. Non-Cryst. Solids Vol. 354 (2008), p.5573

DOI: 10.1016/j.jnoncrysol.2008.09.017

Google Scholar

[15] G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani and A. Pedone: J. Phys. Chem. B Vol. 113 (2009), p.10331

DOI: 10.1021/jp809805z

Google Scholar

[16] N.J. Clayden, S. Esposito, A. Aronne and P. Pernice: J. Non-Cryst. Solids Vol. 258 (1999), p.11

Google Scholar

[17] S.M. Salem, E.K. Abdel-Khalek, E.A. Mohamed and M. Farouk: J. Alloy Compd Vol. 513 (2012), p.35

Google Scholar

[18] B.H. Jung and H.S. Kim: J. Non-Cryst. Solids Vol. 336 (2004), p.96

Google Scholar

[19] Z.J. Wang, Y.C. Hu, H.K. Lu and F. Yu: J. Non-Cryst. Solids Vol. 354 (2008), p.1128

Google Scholar

[20] G. Srinivasarao and N. Veeraiah: J. Solid. State. Chem Vol. 166 (2002), p.104

Google Scholar

[21] G. Srinivasarao and N. Veeraiah: J. Phys. Chem. Solids Vol. 63 (2002), p.705

Google Scholar

[22] F.E. Salman and A. Mekki: J. Non-Cryst. Solids Vol. 357 (2011), p.2658

Google Scholar

[23] S. Ramesh, A.H. Yahaya and A.K. Arof: Solid State Ionics Vol. 152-153 (2002), p.291

Google Scholar