Effects of CeO2 Additions on the Structure and Dielectric Properties of Aluminoborosilicate Glasses

Article Preview

Abstract:

Glasses with compositions 15Al2O3-20B2O3-50SiO2-5CaO-(10-x)MgO-xCeO2 (x=0, 1, 2 and 3 mol %) were prepared by conventional melting method. Fourier-transform infrared spectroscopy (FTIR) indicated that the addition of CeO2 converted trigonal boron ([B) to tetrahedral boron ([B). The glass transition temperatures (Tg) were determined using a differential scanning calorimetry (DSC). Tg increased with increasing CeO2 content. Thus, the addition of CeO2 instead of MgO strengthened the glass network. The dielectric constant εr and loss tanδ were measured for these glasses at 105 Hz. The decrease in εr and tanδ could be attributed to the increase in the rigidity of the glass network as the CeO2 content increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-135

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Gomaa, H.A. Abo-Mosallam and H. Darwish: J Mater Sci: Mater Electron Vol. 20 (2009), p.507

Google Scholar

[2] I. Choi, J.G. Kim, D.G. Lee and I.S. Seo: Compos Sci Tachnol Vol. 71 (2011), p.1632

Google Scholar

[3] A. Sridhar, D.J. Van Dijk and R. Akkerman: Thin Solid Films Vol. 517 (2009), p.4633

Google Scholar

[4] Y.H. Yun and P.J. Bray: J. Non-Cryst. Solids Vol. 44 (1981), p.227

Google Scholar

[5] J. Zhong and P.J. Bray: J. Non-Cryst. Solids Vol 111 (1989), p.67

Google Scholar

[6] W.J. Dell, P.J. Bray and S.Z. Xiao: J. Non-Cryst. Solids Vol. 58 (1983), p.1

Google Scholar

[7] Y.H. Yun and P.J. Bray: J. Non-Cryst. Solids Vol. 27 (1978), p.363

Google Scholar

[8] M. Bengisu, R.K. Brow, E. Yilmaz, A. Mogus-Milankovic, and S.T. Reis, J. Non-Cryst. Solids Vol. 352 (2006), p.3668

Google Scholar

[9] D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. K. Singh and G. Bhikshamaiah: J. Non-Cryst. Solids Vol. 354 (2008), p.5573

DOI: 10.1016/j.jnoncrysol.2008.09.017

Google Scholar

[10] G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani and A. Pedone: J. Phys. Chem. B Vol. 113 (2009), p.10331

DOI: 10.1021/jp809805z

Google Scholar

[11] N.J. Clayden, S. Esposito, A. Aronne and P. Pernice: J. Non-Cryst. Solids Vol. 258 (1999), p.11

Google Scholar

[12] G.D. Chryssikos, M.S. Bitsis, J.A. Kapoutsis and E.I. Kamitsos: J. Non-Cryst. Solids Vol. 217 (1997), p.278

DOI: 10.1016/s0022-3093(97)00224-x

Google Scholar

[13] M. Bengisu, R.K. Brow, E. Yilmaz, A. Mogus-Milankovic and S.T. Reis, J. Non-Cryst. Solids Vol. 352 (2006), p.3668

Google Scholar

[14] D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. K. Singh and G. Bhikshamaiah: J. Non-Cryst. Solids Vol. 354 (2008), p.5573

DOI: 10.1016/j.jnoncrysol.2008.09.017

Google Scholar

[15] G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani and A. Pedone: J. Phys. Chem. B Vol. 113 (2009), p.10331

DOI: 10.1021/jp809805z

Google Scholar

[16] N.J. Clayden, S. Esposito, A. Aronne and P. Pernice: J. Non-Cryst. Solids Vol. 258 (1999), p.11

Google Scholar

[17] B.H. Jung and H.S. Kim: J. Non-Cryst. Solids Vol. 336 (2004), p.96

Google Scholar

[18] Z.J. Wang, Y.C. Hu, H.K. Lu and F. Yu: J. Non-Cryst. Solids Vol. 354 (2008), p.1128

Google Scholar

[19] G. Srinivasarao and N. Veeraiah: J. Solid. State. Chem Vol. 166 (2002), p.104

Google Scholar

[20] G. Srinivasarao and N. Veeraiah: J. Phys. Chem. Solids Vol. 63 (2002), p.705

Google Scholar