Synthesis of CaWO4:(Eu3+,Tb3+) Thin Films by a Two-Step Method at Room Temperature

Article Preview

Abstract:

It is hardly possible to obtain rare earth doped CaWO4 thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4 films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-173

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Bayer and H.G. Wiedemann: Thermochim Acta 133 (1988), 125.

Google Scholar

[2] A.G. Page, S.V. Godbole and M.D. Sastry: J. Phys. Chem. Solids 50 (1989), 571.

Google Scholar

[3] T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev: Opt. Mater. 15 (2000), 205.

Google Scholar

[4] L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko and N.M. Polozkov: Opt. Mater. 23 (2003), 439.

DOI: 10.1016/s0925-3467(02)00335-x

Google Scholar

[5] P. Cerny, P.G. Zverev, H. Jelinkova and T.T. Basiev: Opt. Commun. 177 (2000), 397.

Google Scholar

[6] S.K. Shi, J. Gao and J. Zhou: Opt. Mater. 30 (2008), 1616.

Google Scholar

[7] T.H. Jagemann, F.V. Feilitzsch, H. Hagn, J. Jochum, W. Potzel, W. Rau, M. Stark and W. Westphal: Astroparticle Physics 26 (2006), 269.

DOI: 10.1016/j.astropartphys.2006.06.010

Google Scholar

[8] D. Christofilos, K. Papagelis, S. Ves, G.A. Kourouklis and C. Raptis: J. Phys.: Condens. Matter 14 (2002), 12641.

DOI: 10.1088/0953-8984/14/47/334

Google Scholar

[9] W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata and M. Yoshimura: Appl. Phys. Lett. 66 (1995), 1027.

Google Scholar

[10] C.T. Xia, V.M. Fuenzalida and R.A. Zarate: J. Alloy. Compd. 316 (2001), 250.

Google Scholar

[11] L.P. Chen and Y.H. Gao: Mater. Res. Bull. 42 (2007), 1823.

Google Scholar

[12] M.J. Treadaway and R.C. Powell: J. Chem. Phys. 61 (1974), 4003.

Google Scholar

[13] L.P. Chen: China Patent 201010153529.9. (2010) (In Chinese)

Google Scholar

[14] L.P. Chen, Y.H. Gao, J.X. Yuan, Q.H. Zhang, Y.H. Yin and C.X. Wang: Adv. Mater. Res. 194-196 (2011), 2458.

Google Scholar

[15] L.P. Chen and Y.H. Gao: China Patent 201010034421.8. (2010) (In Chinese)

Google Scholar

[16] M. Czaja, S. Bodyl, P. Gluchowski, Z. Mazurak and W. Strek: J. Alloy. Comp. 451 (2008), 290.

Google Scholar

[17] W.Q. Yin, M.Q. Chen, T.H. Lu, Akashi Mitsuru and X.H Huang: Acta Chimica Sinica 64 (2006), 2127. (In Chinese)

Google Scholar