[1]
Abello JM, Pardalos PM, Resende MGC. Handbook of massive data sets. The Netherlands: Kluwer Academic Publishers, 2002.
Google Scholar
[2]
Busygin S, Prokopyev O, Pardalos P. Biclustering in data mining. Computers & Operations Research, 2008, 35(9):2964-2987.
DOI: 10.1016/j.cor.2007.01.005
Google Scholar
[3]
Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010, 31(8):651-666.
DOI: 10.1016/j.patrec.2009.09.011
Google Scholar
[4]
Madeira SC, Oliveira AL. Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans Comput Biol Bioinformatics, 2004, 1(1):24-45.
DOI: 10.1109/tcbb.2004.2
Google Scholar
[5]
Tanay A, Sharan R, Shamir R.Biclustering Algorithms: A Survey. Handbook of Computational Molecular Biology.Aluru S, ed. London; Chapman and Hall/CRC Press. 2006: 26_21-26_17.
DOI: 10.1201/9781420036275.ch26
Google Scholar
[6]
Cheng Y, Church GM. Biclustering of Expression Data. In: Bourne PE, Gribskov M, Altman RB, eds. Proc. of ISMB'00. California: AAAI Press, 2000.93-103.
Google Scholar
[7]
Hartigan J. Direct clustering of a data matrix. Journal of the American Statistical Association, 1972:123-129.
Google Scholar
[8]
Yang J, Wang W, Wang H, et al. δ-clusters: capturing subspace correlation in a large data set. In: Agrawal R, Dittrich K, Ngu AH, eds. Proc. of the 18th International Conference on Data Engineering. Washington: IEEE Computer Society, 2002.517-528.
DOI: 10.1109/icde.2002.994771
Google Scholar
[9]
Dhillon IS. Co-clustering documents and words using bipartite spectral graph partitioning. In: Lee D, Schkolnick M, Provost F, eds. Proc. of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2001.269-274.
DOI: 10.1145/502512.502550
Google Scholar
[10]
Chakrabarti D, Papadimitriou S, Modha DS, et al. Fully automatic cross-associations. In: Kim W, Kohavi R, Gehrke J, eds. Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2004.79-88.
DOI: 10.1145/1014052.1014064
Google Scholar
[11]
Figueroa A, Borneman J, Jiang T. Clustering binary fingerprint vectors with missing values for DNA array data analysis. Journal of Computational Biology, 2004, 11(5):887-901.
DOI: 10.1089/cmb.2004.11.887
Google Scholar
[12]
Liu PQ, Zhu DM, Xie QS, et al. Complexity and improved heuristic algorithms for binary fingerprints clustering. Journal of Software, 2008, 19(3):500-510.
DOI: 10.3724/sp.j.1001.2008.00500
Google Scholar
[13]
Wang L, Lin Y, Liu X. Approximation Algorithms for Biclustering Problems. SIAM Journal on Computing, 2008, 38(4):1504-1518.
DOI: 10.1137/060664112
Google Scholar
[14]
Zhang ZY, Li T, Ding C, et al. Binary matrix factorization for analyzing gene expression data. Data Mining and Knowledge Discovery, 2010, 20(1):28-52.
DOI: 10.1007/s10618-009-0145-2
Google Scholar
[15]
Amit N. The Bicluster Graph Editing problem.Master, Tel Aviv: Tel Aviv University, 2004.
Google Scholar
[16]
Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002, 18 Suppl 1:S136-144.
DOI: 10.1093/bioinformatics/18.suppl_1.s136
Google Scholar
[17]
Dawande M, Keskinocak P, Swaminathan JM, et al. On Bipartite and Multipartite Clique Problems. Journal of Algorithms, 2001, 41(2):388-403.
DOI: 10.1006/jagm.2001.1199
Google Scholar
[18]
Dawande M, Keskinocak P, Tayur S. On the biclique problem in bipartite graphs.GSIA Working Paper, Pittsburgh, PA 15213, USA: Carnegie Mellon University, 1996.
Google Scholar
[19]
Peeters R. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics, 2003, 131(3):651-654.
DOI: 10.1016/s0166-218x(03)00333-0
Google Scholar
[20]
Harary F. Graph Theory. 1969. Addison-Wesley, Reading, MA.
Google Scholar
[21]
Heydari MH, Morales L, C. O. Shields J, et al. Computing Cross Associations for Attack Graphs and Other Applications. In: Ralph H. Sprague J, ed. Proc. of the 40th Annual Hawaii International Conference on System Sciences. Washington, DC, USA: IEEE Computer Society, 2007.270b.
DOI: 10.1109/hicss.2007.141
Google Scholar
[22]
Bein D, Morales L, Bein W, et al. Clustering and the Biclique Partition Problem. In: Ralph H. Sprague J, ed. Proc. of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008). Big Island, Hawaii: IEEE Computer Society Press, 2008.475.
DOI: 10.1109/hicss.2008.21
Google Scholar
[23]
Garey M, Johnson D. Computers and intractability. A guide to the theory of NP-completeness. New York, NY, USA: W.H. Freeman and Company, 1979.
Google Scholar
[24]
Prelic A. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 2005, 22(9):1122-1129.
Google Scholar