Anode Buffer Layer of Organic Solar Cells and Recent Developments

Article Preview

Abstract:

Stability and efficiency have drawn much attention in research area. Buffer layers are inserted between the anode electrode (typically ITO) and active layer to obtain better performance. In this article development of different categories of materials as anode buffer layer and their possible mechanisms are reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. U. Lee, J. W. Jung, J. W. Jo, W. H. Jo: J. Mater. Chem., 2012, 22, 24265

Google Scholar

[2] D. M. Stevens, Y. Qin, M. A. Hillmyer, C. D. Frisbie: J. Phys. Chem. C 2009, 113, 11408–11415

Google Scholar

[3] M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, A. Hassanzadeh: Solar Energy Materials & Solar Cells 98 (2012) 379–384

DOI: 10.1016/j.solmat.2011.11.036

Google Scholar

[4] Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger: Adv. Mater. 2011, 23, 2226–2230

Google Scholar

[5] P. G. Karagiannidis, N. Kalfagiannis, D. Georgiou, A. Laskarakis, N. A. Hastas, C. Pitsalidis, S. Logothetidis: J. Mater. Chem., 2012, 22, 14624–14632

DOI: 10.1039/c2jm31277h

Google Scholar

[6] H.-C. Han, C.-A. Tseng, C.-Y. Du, A. Ganguly, C.-W. Chong, S.-B. Wang, C.-F. Lin, S.-H. Chang, C.-C. Su, J.-H. Lee, K.-H. Chen, L. C. Chen: J. Mater. Chem., 2012, 22, 22899

Google Scholar

[7] S. Lacher, N. Obata, S.-C. Luo, Y. Matsuo, B. Zhu, H. Yu, E. Nakamura: Appl. Mater. Interfaces 2012, 4, 3396−3404

Google Scholar

[8] X. Xi, Q, Meng, F. Li, Y. Ding, J. Ji, Z. Shi, G. Li: Solar Energy Materials & Solar Cells 94 (2010) 623–628

DOI: 10.1016/j.solmat.2009.12.014

Google Scholar

[9] H. Y. Wei, J.-H. Huang, K.-C. Ho, C.-W. Chu: Appl. Mater. & Interfaces, 2010, Vol. 2, No. 5, 1281–1285 • (2010)

Google Scholar

[10] Q. Chen, B. J. Worfolk, T. C. Hauger, U. A. Atar, K. D. Harris, J. M. Buriak: Appl. Mater. Interfaces 2011, 3, 3962–3970

DOI: 10.1021/am200849r

Google Scholar

[11] F.-C. Chen, J.-L. Wu, Y. Hong, C.-L. Lee: The 16th Opto-Electronics And Communication Conference, OECC (2011)

Google Scholar

[12] C.-J. Ko, Y.-K. Lin, F.-C. Chen, C.-W. Chu: Appl. Phys. Lett. 90, 063509 (2007)

Google Scholar

[13] Z. Hu, J. Zhang, Z. Hao, Y. Zhao: Solar Energy Materials & Solar Cells 95 (2011) 2763–2767

DOI: 10.1016/j.solmat.2011.04.040

Google Scholar

[14] Y. Sun, S.-C. Chien, H.-L. Yip, Y. Zhang, K.-S. Chen, D. F. Zeigler, F.-C. Chen, B. Lin, and A. K.-Y. Jen: Chem.Mater. 2011, 23, 5006−5015

Google Scholar

[15] J. W. Jung, J. U. Lee, W. H. Jo: J. Phys. Chem. C 2010, 114, 633–637

Google Scholar

[16] Y.-D. Liu, B. Chu, Z.-S. Su, W.-L. Li, T.-J. Zhuang, F.-M. Jin, X.-W. Yan, B. Zhao, F. Zhang, D. Fan, J.-B. Wang, Y. Gao: Organic Electronics 13 (2012) 2865–2869

Google Scholar

[17] B. Kang, L.W. Tan, S.R.P. Silva: Organic Electronics 10 (2009) 1178–1181

Google Scholar

[18] N. I. Craciun,† J. Wildeman,† and P. W. M. Blom: J. Phys. Chem. C 2010, 114, 10559–10564

Google Scholar

[19] M. F. Lo, T. W. Ng, S. L. Lai, M. K. Fung, S. T. Lee: Appl. Phys. Lett. 99, 033302 (2011)

Google Scholar

[20] J. Y. Kim, S. Noh, Y. M. Nam, J. Y. Kim, J. Roh, M. Park, J. J. Amsden, D. Y. Yoon, C. Lee, W. H. Jo: ACS Appl. Mater. Interfaces 2011, 3, 4279–4285

DOI: 10.1021/am2009458

Google Scholar

[21] L.-M. Chen, Z. Xu, Z, Hong, Y. Yang: J. Mater. Chem., 2010, 20, 2575–2598

Google Scholar

[22] T. Yang, W. Cai, D. Qin, E. Wang, Li. Lan, X. Gong, J. Peng, Y. Cao: J. Phys. Chem. C 2010, 114, 6849–6853

Google Scholar

[23] K.-S. Shin, H. Jo, H.-J. Shin, W. M. Choi, J.-Y. Choi, S.-W. Kim: J. Mater. Chem., 2012, 22, 13032

Google Scholar

[24] S.-C. Chien, F.-C. Chen, M.-K. Chung, C.-S. Hsu: J. Phys. Chem. C 2012, 116, 1354–1360

Google Scholar

[25] P. R. Brown, R. R. Lunt, N. Zhao,.T. P. Osedach, D. D. Wanger, L.-Yi Chang, M. G. Bawendi, V. Bulovi: Nano Lett. 2011, 11, 2955–2961

DOI: 10.1021/nl201472u

Google Scholar

[26] F. Zhang, F. Sun, Y. Shi, Z. Zhuo, L. Lu, D. Zhao, Z Xu, Y. Wang: Energy Fuels 2010, 24, 3739–3742

Google Scholar

[27] J. J. Jasieniak, J. Seifter, J. Jo, T. Mates, A. J. Heeger: Adv. Funct. Mater. 2012, 22, 2594–2605

DOI: 10.1002/adfm.201102622

Google Scholar

[28] D.-H. Kim, J.-W. Kang, H.-R. Kim, Y.-J. Kang, S.-Y. Park, Y.-S. Jeong: IEEE 2011, 978-1-4244-9965-6/11

Google Scholar

[29] Z. Tan, D. Qian, W. Zhang, L. Li, Y. Ding, Q. Xu, F. Wang , Y. Li: J. Mater. Chem. A, 2013, Advance Article

Google Scholar

[30] W. Zhang, H. Wang, B. Chen, X. Bi, S. Venkatesan, Q. Qiao, S. Yang: J. Mater. Chem., 2012, 22, 24067

Google Scholar

[31] J. Wu, X.-Y. Guo, Z.-Y. Xie: CHIN. PHYS. LETT. Vol. 29, No. 9 (2012) 098801

Google Scholar

[32] F. Liu, S. Shao, X. Guo, Y. Zhao, Z. Xie: Solar Engy. Mater. & Solar Cells 94 (2010) 842–845

Google Scholar

[33] D. Y. Kim, G. Sarasqueta, F. So: Solar Energy Materials & Solar Cells 93 (2009) 1452–1456

DOI: 10.1016/j.solmat.2009.03.011

Google Scholar

[34] Y.-C. Tseng, A. Mane, J. W. Elam, S. B. Darling: Solar Energy Materials & Solar Cells 99 (2012) 235–239

DOI: 10.1016/j.solmat.2011.12.004

Google Scholar

[35] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen: Appl. Phys. Lett. 94, 043311 (2009)

Google Scholar

[36] J.-H. Huang, T.-Y. Huang, H.-Y. Wei, K.-C. Hobc, C.-W. Chu: RSC Advances, 2012, 2, 7487–7491

Google Scholar

[37] Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li: J. Phys. Chem. C 2012, 116, 18626−18632

Google Scholar

[38] M. S. Ryu, J. Jang: Solar Energy Materials & Solar Cells 95 (2011) 3015–3020

Google Scholar

[39] Z. Tan, W. Zhang, C. Cui, Y. Ding, D. Qian, Q. Xu, L. Li, S. Lia, Y. Li: Phys. Chem. Chem. Phys., 2012, 14, 14589–14595

Google Scholar

[40] Z. Tan, W. Zhang, D. Qian, C. Cui, Qi Xu, L. Li, S. Lia, Y. Li: Phys. Chem. Chem. Phys., 2012, 14, 14217–14223

Google Scholar

[41] D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang, M. Shen: Nano Lett. 2012, 12, 2803−2809

Google Scholar

[42] S. Shao, F. Liu, Z. Xie, L. Wang: J. Phys. Chem. C 2010, 114, 9161–9166

Google Scholar

[43] C. H. Cheng, J. W., G. T. Du, S. H. Shi, Z. J. Du: Appl. Phys. Lett. 97, 083305 (2010)

Google Scholar

[44] L. Zuo, X. Jiang, L. Yang, M. Xu, Y. Nan: Appl. Phys. Lett. 99, 183306 (2011)

Google Scholar

[45] S. Dey, P. Vivo, A. Efimov, H. Lemmetyinen: J. Mater. Chem., 2011, 21, 15587

Google Scholar

[46] V. M. Manninen, W. A. E. Omar, J. P. Heiskanen, H. J. Lemmetyinena, O. E. O. Hormib: J. Mater. Chem., 2012, 22, 22971

Google Scholar

[47] S. Zhong,J. Q. Zhong, H. Y. Mao, R. Wang, Y. Wang, D. C. Qi, K. P. Loh, A. T. S. Wee, Z. K. Chen, W. Chen.: Appl. Mater. Interfaces 2012, 4, 3134−3140

DOI: 10.1021/am300887j

Google Scholar

[48] B. R. Lee, J.-w. Kim, D. Kang, D. Wook Lee, S.-J. Ko, H. J. Lee, C.-L. Lee, J. Y. Kim, H. S. Shin, My. Hoon Song: Nano VOL. 6, NO. 4, 2984–2991, (2012)

DOI: 10.1021/nn300280q

Google Scholar

[49] M. He, J. Jung, F. Qiu, Z. Lin: J. Mater. Chem., 2012, 22, 24254

Google Scholar

[50] S. Zhong, J. Q. Zhong, H. Y. Mao, R. Wang, Y. Wang, D. C. Qi, K. P. Loh, A. T. S. Wee, Z. K. Chen, W. Chen.: Appl. Mater. Interfaces 2012, 4, 3134−3140

DOI: 10.1021/am300887j

Google Scholar