The Role of Oxygen Ambience on the Optical Characteristics of ZnO Films

Article Preview

Abstract:

Zinc oxide (ZnO) films are grown by two methods-pulse laser deposition (PLD) and radio-frequency magnetron sputtering at various oxygen ambiences. Based on x-ray diffraction spectra and photoluminescence (PL) spectra, effects of the oxygen ambient on the grain size and emission properties of the ZnO films are investigated. For the samples grown by PLD, the PL spectrum consists of a single ultraviolet (UV) peak except one sample deposited at a low O2 pressure of 7 Pa. All the samples grown by sputtering have both a UV peak and a green emission. The disappearance of the green emission of the PLD samples is ascribed to deficiency of oxygen vacancies (Ov), and the green emission of the sample grown by sputtering is due to abundant Ov. The intensity change of the UV emission is due to the variation of exciton emission, which is related to grain size and stoichiometry. The position shifting of the UV peak of the PLD samples originates from the Zn interstitial-related degradation of stoichiometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang: Phys. Rev. Lett Vol 82 (1999),p.2278

Google Scholar

[2] D. M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto: Appl. Phys. Lett Vol. 70(1997),p.2230

Google Scholar

[3] S.H. Jeong, B.S. Kim, B.T. Lee: Appl. Phys. Lett Vol.82 (2003),p.2625

Google Scholar

[4] F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin: J. Appl. Phys Vol.101(2007),p.053106

Google Scholar

[5] B. Kumar, H. Gong, S. Vicknesh, S.J. Chua, S. Tripathy: Appl. Phys. Lett Vol.89(2006),p.141901

Google Scholar

[6] B. Yang, A. Kumar, P. Feng, R.S. Katiyar: Appl. Phys. Lett Vol.92 (2008),p.233112

Google Scholar

[7] X.L. Xu, C.X. Guo, Z.M. Qi, H.T. Liu, J. Xu, C.S. Shi, C. Chong, W.H. Huang, Y.J. Zhou, C.M. Xu: Chem. Phy. Lett Vol.364(2002),p.57

Google Scholar

[8] K. Prabakar, C. Kim, C. Lee: Cryst. Res. Technol Vol.40(2005),p.1150

Google Scholar

[9] X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong: Appl. Phys. Lett Vol.78(2001),p.2285

Google Scholar

[10] B. Lin, Z. Fu, Y. Jia: Appl. Phys. Lett Vol.79(2001),p.943

Google Scholar

[11] K.T. Roro, J.K. Dangbegnon, S. Sivaraya, A.W.R. Leitch, J.R. Botha: J. Appl. Phys Vol.103(2008),p.053516

Google Scholar

[12] H.Z. Wu, D.J. Qiu, Y.J. Cai, X.L. Xu, N.B. Chen: J. Cryst. Growth Vol.245(2002),p.50

Google Scholar

[13] S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee: Chem. Phy. Lett Vol.363(2002),p.134

Google Scholar

[14] H.A. Cheol, Y.K. Young, C.K. Dong, K.M. Sanjay, K.C. Hyung: J. Appl. Phys Vol.105(2009),p.013502

Google Scholar

[15] B.J. Kwon, H.S. Kwack, S.K. Lee, Y.H. Cho, D.K. Hwang, S.J. Park: Appl. Phys. Lett Vol.91 (2007),p.061903

Google Scholar

[16] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito: J. Cryst. Growth 130(1993),p.269

Google Scholar

[17] L. Shen, Z.Q. Ma, C. Shen, F. Li: Nuclear Inst and Methods in Physics Research B Vol.268 (2010), p.2679

Google Scholar

[18] A. Asadov, W. Gao, Z. Li, J. Lee, M. Hodgson: Thin Solid Films Vol.476 (2005),p.201

Google Scholar

[19] X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay: J. Cryst. Growth Vol.223(2001),p.201

Google Scholar