Comparison of Current-Voltage Characteristics of Bulk Polyaniline and Nano Dimensional Polyaniline Particles in Nanoporous Dielectric Matrix of MIL-101

Article Preview

Abstract:

We investigated current-voltage (I-V) characteristics of bulk polyaniline and aniline polymerized inside nanopores of chromium terephthalate dielectric matrix MIL-101. The temperature dependence of electrical conductivity σ (T) of these materials are described by the fluctuation-induced tunneling model (FIT), which means that the main contribution to a net conductivity is caused by contacts between particles of the polyaniline. The comparison of I-V for these two types of materials shown that I-V characteristics of bulk polyaniline are described by the quasi-1D VRH model while for aniline polymerized inside nanopores of chromium terephthalate dielectric matrix MIL-101 by extended FIT model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, K.R. Zhdanov, V.L. Kuznetsov, I.N. Mazov, A.N. Usoltseva, A.V. Ischenko: Diamond & Related Materials Vol. 19 (2010), p.964.

DOI: 10.1016/j.diamond.2010.02.035

Google Scholar

[2] I. N. Mazov, V. L. Kuznetsov, S. I. Moseenkov, A. V. Ishchenko, N. A. Rudina, A. I.Romanenko, T. I. Buryakov, O. B. Anikeeva, J. Macutkevic, D. Seliuta, G. Valusis, J. Banys: Nanoscience and Nanotechnology Letters Vol. 3 (2011), p.18.

DOI: 10.1166/nnl.2011.1113

Google Scholar

[3] J. Macutkevich, R. Adomavicius, A. Krotkus, J. Banys, V. Kuznetsov, S. Moseenkov, A. Romanenko, and O.B. Anikeeva: J. of Applied Physics Vol. 111 (2011), p.103701.

DOI: 10.1063/1.4714555

Google Scholar

[4] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gua, A.G. MacDiarmid: Phys. Rev. Lett. Vol. 39 (1977), p.1098.

DOI: 10.1103/physrevlett.39.1098

Google Scholar

[5] N.F. Mott, E.A. Davis. Electronic processes in non-crystalline materials. Clarendon Press, Oxford (1979). 604 p.

Google Scholar

[6] P. Sheng: Phys. Rev. B Vol. 21 (1980), p.2180.

Google Scholar

[7] A.N. Aleshin, H.J. Lee, S.H. Jhang, H.S. Kim, K. Akagi, Y.W. Park: Phys. Rev. B Vol. 72 (2005), p.153202.

Google Scholar

[8] S. Samitsu, T. Iida, M. Fujimori, S. Heike, T. Hashizume, T. Shimomura, K. Ito: Synth. Met. Vol. 152 (2005), p.497.

DOI: 10.1016/j.synthmet.2005.07.213

Google Scholar

[9] L. Gence, S. Faniel, C. Gustin, S. Melinte, V. Bayot, V. Callegari, O. Reynes, S. Demoustier-Champagne: Phys. Rev. B Vol. 76 (2007), p.115415.

DOI: 10.1103/physrevb.76.115415

Google Scholar

[10] A. Rahman, M.K. Sanyal: Phys. Rev. B Vol. 76 (2007), p.045110.

Google Scholar

[11] A.B. Kaiser, S.A. Rogers, Y.W. Park, Mol. Cryst. Liq. Cryst. Vol. 415 (2004), p.115.

Google Scholar

[12] A.B. Kaiser, Y.W. Park: Synth. Met. Vol. 152 (2005), p.181.

Google Scholar

[13] J. Joo, S. M. Long, J. P. Pouget, E. J. Oh, MacDiarmid, A. J. Epstein: Phys. Rev. B Vol. 57 (1998), p.9567.

Google Scholar

[14] Zhi-Hua, Yin, Yun-Ze Long, Chang-Zhi Gu, P. Sheng: Nanoscale Res Lett (2009) p.63.

Google Scholar

[15] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki: Science Vol. 309 (2005), p.2040.

DOI: 10.1126/science.1116275

Google Scholar

[16] S. C. Hobaica: Journal of Polymer Science Part B; Polymer Physics Vol. 41 (2003), p.807.

Google Scholar

[17] Z. H. Wang, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein: Phys. Rev. B Vol. 45 (1992), p.4190.

Google Scholar