[1]
Kirchhoff G.Uber das Gleichgewicht und die bewegung eines unendlich dunnen elastischen Stabes.J.Rein Angew.Math.,1859,56:285-313
DOI: 10.1515/9783112368688-027
Google Scholar
[2]
Love.A treatise on mathematical theory of elasticity.4th ed.New York:Dover,(1927)
Google Scholar
[3]
Antman S.S. Nonlinear Problems of Elasticity.(Spring-Verlag,New York,1994)
Google Scholar
[4]
Svetlitsky V.A., Dynamics of Rods, Springer, Berlin, Heidelberg, New York, (2004)
Google Scholar
[5]
Benham C J. An elastic model of the large-scale structure of duples DNA. Biopolymers, 1979,18: 609~623
DOI: 10.1002/bip.1979.360180310
Google Scholar
[6]
Le Bret M. Catastophic variation of twist and writhing of circular DNAs with contraint, Biopolymers, 1979, 18 : 1709~1725
DOI: 10.1002/bip.1979.360180710
Google Scholar
[7]
J.C. Simo, J.E. Marsden, P.S. Krishnaprasad, The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids,rods, and plates, Arch. Ration. Mech. Anal. 104 (2) (1988) 125–183
DOI: 10.1007/bf00251673
Google Scholar
[8]
J.C. Simo, N. Tarnow, M. Doblaré, Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms, Int. J. Numer. Meth.Engrg. 38 (9) (1995) 1431–1473
DOI: 10.1002/nme.1620380903
Google Scholar
[9]
J.C. Simo, L. Vu-Quoc, A three-dimensional finite-strain rod model. Part II:Computational aspects, Comput. Meth. Appl. Mech. Engrg. 58 (1) (1986) 79–116
DOI: 10.1016/0045-7825(86)90079-4
Google Scholar
[10]
J.C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions – A geometrically exact approach, Comput. Meth. Appl. Mech. Engrg.66 (2) (1988) 125–161.
DOI: 10.1016/0045-7825(88)90073-4
Google Scholar
[11]
D.J. Dichmann,Yiwei Li,J.H. Maddocks,Hamiltonian formulations and symmetries in rod mechanics, Mathematics and its Applications 82 (1996) Springer Verlag, 71-113
DOI: 10.1007/978-1-4612-4066-2_6
Google Scholar
[12]
E. Celledoni , N. S. A Hamiltonian and multi-Hamiltonian formulation of a rod model using quaternions, Comput. Methods Appl. Mech. Engrg. 199 (2010) 2813–2819
DOI: 10.1016/j.cma.2010.04.017
Google Scholar
[13]
Yanzhu Liu, in China, non-linear mechanics of elastic rods–the theoric basis of DNA mechanic model, Tsinghua University Press&Springer, (2006)
Google Scholar
[14]
Mourad Chamekh S.M.A,M.M., Modeling and numerical treatment of elastic rods with frictionless self-contact Comput. Methods Appl. Mech. Engrg.198(2009)3751-3764
DOI: 10.1016/j.cma.2009.08.005
Google Scholar
[15]
Dichmann D.J. Hamiltonian Dynamics an elastica and stability of solitary waves.PH.D.thesis university of maryland
Google Scholar