[1]
WEI Yingjun, CHANG Siqin. Research on fuzzy control technology applied to magnetic powder clutch during vehicle starting[J]. China Mechanical Engineering, vol.16, no.11, pp.1029-1033, 2005.
Google Scholar
[2]
Cheng WANG, Shanzhen XU. Study on performance of vehicle magnetic powder clutch with permanent magnet[C]. Proceedings 4th International Conference on Information and Computing, pp.208-211, Phuket Island, Thailand, 2011.
DOI: 10.1109/icic.2011.140
Google Scholar
[3]
Shanzhen XU, Cheng WANG. Structure analysis and design of magnetic powder clutch for vehicle based on analysis of electromagnetic[C]. 2012 2nd International Conference on Consumer Electronics, Communications and Networks, pp.2870-2873, Three Gorges, China, 2012.
DOI: 10.1109/cecnet.2012.6201990
Google Scholar
[4]
Hua LI, Jin YAO and Shijia ZHAO. High-efficiency hydraulic torque-converting transmission system[J]. Journal of Mechanical Engineering, vol.46, no.13, pp.116-121, (2010)
DOI: 10.3901/jme.2010.13.116
Google Scholar
[5]
Xiaogang WU, Xudong WANG and Tengwei YU. A research on the fuzzy control of magnetic powder clutch based on adaptive weight particle swarm optimization[J]. Automotive Engineering, vol.32, no.6, pp.510-514, (2010)
DOI: 10.1109/ccdc.2008.4597872
Google Scholar
[6]
Xiaogang WU, Xudong WANG. Fuzzy control research of magnetic powder clutch based on variable learning factor particle swarm optimization[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, vol.4, pp.117-120, 2010.
DOI: 10.1109/cmce.2010.5610195
Google Scholar
[7]
Pyung Hun Chang, Je Hyung Jung. A systematic method for gain selection of robust PID control for nonlinear plants of second-order controller canonical form[J]. IEEE Transactions on Control Systems Technology, vol.17, no.2, pp.473-483, 2009.
DOI: 10.1109/tcst.2008.2000989
Google Scholar
[8]
M. Vagia, A. Tzes. Robust PID control design for an electrostatic micromechanical actuator with structured uncertainty[J]. IET Control Theory Applications, vol.2, no.5, pp.365-373, 2008.
DOI: 10.1049/iet-cta:20070284
Google Scholar
[9]
Carl-Magnus Fransson, Torsten Wik and Bengt Lennartson, et al. Nonconservative robust control: optimized and constrained sensitivity functions[J]. IEEE Transactions on control systems technology, vol.17, no.2, pp.298-308, 2009.
DOI: 10.1109/tcst.2008.924564
Google Scholar
[10]
Eranda Harinath, George K. I. Mann. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems[J]. IEEE Transactions on systems, Man and Cybernetics- Part B: Cybernetics, vol.38, no.3, pp.667-674, 2008.
DOI: 10.1109/tsmcb.2008.919232
Google Scholar
[11]
J. L. Meza, V. Santibanez and R. Soto, et al. Fuzzy self-tuning PID semiglobal regulator for robot manipulators[J]. IEEE Transactions on Industrial electronics, vol. 59, no.6, pp.2709-2717, (2012)
DOI: 10.1109/tie.2011.2168789
Google Scholar
[12]
D. Devaraj, B. Selvabala. Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional-integral-derivative controller in automatic voltage regulator system[J]. IET Generation, Transmission & Distribution, vol.3, no.7, pp.641-649, 2009.
DOI: 10.1049/iet-gtd.2008.0287
Google Scholar
[13]
M. B. B. Sharifian, A. Mirlo and J. Tavoosi, et al. Self-Adaptive RBF neural network PID controller in linear elevator[C]. 2011 International Conference on Electrical Machines and Systems, pp.1-4, (2011)
DOI: 10.1109/icems.2011.6073387
Google Scholar
[14]
Wanzhao WANG, Xingtao ZHAO and Yanping SONG. Application of fuzzy-RBF-based PID controller in superheated steam temperature control system[J]. Electric Power Automation Equipment, vol.27, no.11, pp.48-50, 2007.
Google Scholar
[15]
Jing ZHANG, Xuehong PEI. Self tuning PID controller of RBF based on-line identification neural network[J]. Electric Machines and Control, vol.13, no.S1, pp.157-160, 2009.
Google Scholar
[16]
Roeva Olympia, Slavov Tsonyo. PID controller tuning based on metaheuristic algorithms for bioprocess control[J]. Biotechnology and Biotechnological Equipment, vol.26, no.5, pp.3267-3277, 2012.
DOI: 10.5504/bbeq.2012.0065
Google Scholar
[17]
Altinten Ayla, Ketevanlioglu Fazil and Erdogan Sebahat, et al. Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm[J]. Chemical Engineering Journal, vol.138, no.1-3, pp.490-497, 2008.
DOI: 10.1016/j.cej.2007.07.029
Google Scholar
[18]
Wu Chia-Ju, Ko Chia-Nan and Fu Yu-Yi, et al. A genetic-based design of auto-tuning fuzzy PID controllers[J]. International Journal of Fuzzy Systems, vol.11, no.1, pp.49-58, 2009.
Google Scholar
[19]
Ali Hashim, Ullah Ikram and Irfan M. et al. Genetic algorithm based PID tuning for controlling paraplegic humanoid walking movement[J]. International Journal of Computer Science Issues, vol.9, no.4, pp.275-285, 2012.
Google Scholar
[20]
LIU Jinkun. The MATLAB Simulation of advanced PID control(3rd edition)[M]. Beijing: Publishing House of Electronics Industry,(2012)
Google Scholar