Hydrothermal Synthesis, Characterization and Optical Properties of Zn-Doped CdS Dendritic Nanostructures

Article Preview

Abstract:

Zn-doped CdS dendritic nanostructures were prepared by a simple hydrothermal method. The product displays single-crystalline characteristic. The dendritic crystal is formed by growing along several equivalent directions ([2-1-10],[-1-120]and[-12-10]). Due to doping Zn, the CdS dendritic nanostructures present some beneficial properties and are promising candidates for future applications in optoelectronic nanodevices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

241-245

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Y Zhai, X. S.G Fang, L. Li,Y. Bando, D. Golberg, Nanoscale 2 (2010) 168.

Google Scholar

[2] G. S. Wu, J. P. Wang, D. F. Thomas, A. C. Chen, Langmuir 24 (2008), 3503.

Google Scholar

[3] S. Taguchi, A. Ishizumi,T. Tayagaki, Y. Kanemitsu, Appl. Phys. Lett., 94 (2009) 173101.

DOI: 10.1063/1.3125433

Google Scholar

[4] T. Kang, J. Sung,W. Shim, H. S. Moon, J. H Cho,Y. Jo, W. Y. Lee, B. S. Kim, J. Phys. Chem. C 113 (2009) 5352.

Google Scholar

[5] X. Y. Yang, A. Wolcott, G. M. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li Nano Lett. 9 (2009) 2331.

Google Scholar

[6] D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, J. Phys. Chem. C 116 (2011) 150.

Google Scholar

[7] T. S. Zuo, Z. P. Sun, Y. L. Zhao, X. M. Jiang, X. Y. Gao, J. Am. Chem. Soc. 132 (2010) 6618.

Google Scholar

[8] W. C. Zhou, D. S. Tang, A. L. Pan, Q. L. Zhang, Q. Wan, B. S. Zou, J. Phys. Chem. C 115 (2011) 1415.

Google Scholar

[9] M. Ahmad, H. Y. Sun, J. Zhu, ACS Appl. Mater. Interfaces 3 (2011) 1299.

Google Scholar

[10] A. Gautam, F. C. J. M. van Veggel, Chem. Mater. 23 (2011) 4817.

Google Scholar

[11] C. N. Zhang, S. H. Chen, L. Mo, Y. Huang, H. J. Tian, L. H. Hu, Z. P. Huo, S. Y. Dai, F. T. Kong, X. Pan, J. Phys. Chem. C 115 (2011) 16418.

Google Scholar

[12] P. K. Singh, P. Kumar, T. Seth, H. W. Rhee, B. Bhattacharya, J. Phys. Chem. Solid. 73 (2012) 1159.

Google Scholar

[13] M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, J. Phys. Chem. C 115 (2011) 9503 .

Google Scholar

[14] A. Nag, S. Sapra, S. S. Gupta, A. Prakash, A. Ghangrekar, N. Perisamy, D. D. Sarma, Bull. Mater. Sci. 31 (2008) 561.

DOI: 10.1007/s12034-008-0087-0

Google Scholar

[15] M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, Z. Li. Wang, Angew. Chem. Int. Ed. 44 (2005) 2.

Google Scholar

[16] J. J. Ma, H. Jin, X. Y. Liu, M. E. Fleet, J. X. Li, X. J. Cao, S. H. Feng, Crystal Growth & Design 8 (2008) 4460.

Google Scholar

[17] S. Kar, S. Chaudhuri, J. Phys. Chem. B 110 (2006) 4542.

Google Scholar

[18] S. L. Xiong, X. G. Zhang, Y. T. Qian, Crystal Growth & Design 9 (2009) 5259.

Google Scholar