Adaptive Feedback Control for a Class of Discrete Chaotic Systems

Article Preview

Abstract:

Discrete chaotic systems are more difficult to control than continuous chaotic systems. We discuss adaptive control scheme of continuous chaotic systems published in a series of papers, and study on how the convergence factor affects the convergence time and the property of final control strength by mathematical analysis and number simulations. Then we generalize it into discrete systems satisfying certain conditions and provide mathematical proof. The effect of convergence factor is emphasized. Finally, we apply the scheme to two discrete chaotic systems, which verify its effectiveness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

2791-2798

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Edward, O., C. Grebogi, and J. A. Yorke, Controlling Chaos. Phys. Rev. Lett., 1990, 64(11): 1196-1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[2] Ditza, A., C. Grebogi, E. Ott, and J. A. Yorke, Controlling Chaos in High Dimensional Systems. Phys. Rev. Lett., 1992, 69(24): 3479-3482.

DOI: 10.1103/physrevlett.69.3479

Google Scholar

[3] Andrievskii, B. R. and A. L. Fradkov, Control of Chaos: Methods and Applications. I. Methods. Automat. Rem. Control., 2003, 64(5):3-45.

Google Scholar

[4] Alexander, L. Fradkov, Robin J. Evans, Control of chaos: Methods and applications in engineering. Annu. Rev. Control, 2005, 29(1):33-56.

Google Scholar

[5] Pyragas, K., Continuous control of chaos by self-controlling feedback. Phys. Lett. A., 1992, 170(6): 421-428.

DOI: 10.1016/0375-9601(92)90745-8

Google Scholar

[6] Li, T., A. Song, and S. Fei, Master-slave synchronization for delayed Lur'e systems using time-delay feedback control. Asian J. Control, 2011,13(6):879-892.

DOI: 10.1002/asjc.198

Google Scholar

[7] Moosa, A., H. Khaloozadeh and X. Liu, Synchronizing chaotic systems with parametric uncertainty via a novel adaptive impulsive observer. Asian J. Control,2011, 13(6): 809-817.

DOI: 10.1002/asjc.341

Google Scholar

[8] Zhang, L.P., H. B. Jiang, Impulsive generalized synchronization for a class of nonlinear discrete chaotic systems. Commun Nonlinear Sci Numer Simulat., 2011, 16(4):2027-2032.

DOI: 10.1016/j.cnsns.2010.07.022

Google Scholar

[9] Vincent, U.E., A.N. Njah, J.A. Laoye, Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Physica D, 2007, 231(2):130-136.

DOI: 10.1016/j.physd.2007.04.003

Google Scholar

[10] Huberman, B A, Dynamics of Adaptive Systems. IEEE Trans. Circuits Syst. 1990,37(4): 547-550.

DOI: 10.1109/31.52759

Google Scholar

[11] Huang, D.B., Stabilizing Near-Nonhyperbolic Chaotic Systems with Applications. Phys. Rev. Lett. 2004, 93(21): 214101.

DOI: 10.1103/physrevlett.93.214101

Google Scholar

[12] Huang, D.B., Synchronization-based estimation of all parameters of chaotic systems from time series. Phys. Rev. E, 2004,69(6):067201.

DOI: 10.1103/physreve.69.067201

Google Scholar

[13] Huang, D.B., Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E, 2005, 71(3): 037203.

DOI: 10.1103/physreve.71.037203

Google Scholar

[14] Huang, D.B., Adaptive-feedback control algorithm. Phys. Rev. E, 2006,73(6):066204.

Google Scholar

[15] R.W. Guo, A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A, 2008,372(34):5593-5597.

DOI: 10.1016/j.physleta.2008.07.016

Google Scholar

[16] Wei Lin, Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys.Lett. A, 2008,372(18):3195-3200.

DOI: 10.1016/j.physleta.2008.01.038

Google Scholar

[17] Guoxin Chen, A simple adaptive feedback control method for chaos and hyper-chaos control. Appl. Math. Comput., 2011,217(17):7258-7264.

DOI: 10.1016/j.amc.2011.02.017

Google Scholar

[18] Ming, C. P., Adaptive sliding mode observer-based synchronization for uncertain chaotic systems. Asian J. Control. 2012,14(3):736-743.

DOI: 10.1002/asjc.290

Google Scholar