[1]
Edward, O., C. Grebogi, and J. A. Yorke, Controlling Chaos. Phys. Rev. Lett., 1990, 64(11): 1196-1199.
DOI: 10.1103/physrevlett.64.1196
Google Scholar
[2]
Ditza, A., C. Grebogi, E. Ott, and J. A. Yorke, Controlling Chaos in High Dimensional Systems. Phys. Rev. Lett., 1992, 69(24): 3479-3482.
DOI: 10.1103/physrevlett.69.3479
Google Scholar
[3]
Andrievskii, B. R. and A. L. Fradkov, Control of Chaos: Methods and Applications. I. Methods. Automat. Rem. Control., 2003, 64(5):3-45.
Google Scholar
[4]
Alexander, L. Fradkov, Robin J. Evans, Control of chaos: Methods and applications in engineering. Annu. Rev. Control, 2005, 29(1):33-56.
Google Scholar
[5]
Pyragas, K., Continuous control of chaos by self-controlling feedback. Phys. Lett. A., 1992, 170(6): 421-428.
DOI: 10.1016/0375-9601(92)90745-8
Google Scholar
[6]
Li, T., A. Song, and S. Fei, Master-slave synchronization for delayed Lur'e systems using time-delay feedback control. Asian J. Control, 2011,13(6):879-892.
DOI: 10.1002/asjc.198
Google Scholar
[7]
Moosa, A., H. Khaloozadeh and X. Liu, Synchronizing chaotic systems with parametric uncertainty via a novel adaptive impulsive observer. Asian J. Control,2011, 13(6): 809-817.
DOI: 10.1002/asjc.341
Google Scholar
[8]
Zhang, L.P., H. B. Jiang, Impulsive generalized synchronization for a class of nonlinear discrete chaotic systems. Commun Nonlinear Sci Numer Simulat., 2011, 16(4):2027-2032.
DOI: 10.1016/j.cnsns.2010.07.022
Google Scholar
[9]
Vincent, U.E., A.N. Njah, J.A. Laoye, Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Physica D, 2007, 231(2):130-136.
DOI: 10.1016/j.physd.2007.04.003
Google Scholar
[10]
Huberman, B A, Dynamics of Adaptive Systems. IEEE Trans. Circuits Syst. 1990,37(4): 547-550.
DOI: 10.1109/31.52759
Google Scholar
[11]
Huang, D.B., Stabilizing Near-Nonhyperbolic Chaotic Systems with Applications. Phys. Rev. Lett. 2004, 93(21): 214101.
DOI: 10.1103/physrevlett.93.214101
Google Scholar
[12]
Huang, D.B., Synchronization-based estimation of all parameters of chaotic systems from time series. Phys. Rev. E, 2004,69(6):067201.
DOI: 10.1103/physreve.69.067201
Google Scholar
[13]
Huang, D.B., Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E, 2005, 71(3): 037203.
DOI: 10.1103/physreve.71.037203
Google Scholar
[14]
Huang, D.B., Adaptive-feedback control algorithm. Phys. Rev. E, 2006,73(6):066204.
Google Scholar
[15]
R.W. Guo, A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A, 2008,372(34):5593-5597.
DOI: 10.1016/j.physleta.2008.07.016
Google Scholar
[16]
Wei Lin, Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys.Lett. A, 2008,372(18):3195-3200.
DOI: 10.1016/j.physleta.2008.01.038
Google Scholar
[17]
Guoxin Chen, A simple adaptive feedback control method for chaos and hyper-chaos control. Appl. Math. Comput., 2011,217(17):7258-7264.
DOI: 10.1016/j.amc.2011.02.017
Google Scholar
[18]
Ming, C. P., Adaptive sliding mode observer-based synchronization for uncertain chaotic systems. Asian J. Control. 2012,14(3):736-743.
DOI: 10.1002/asjc.290
Google Scholar