Hydrogen Storage in MOF-5 with Fluorine Substitution: A van der Waals Density Functional Theory Study

Article Preview

Abstract:

Physisorption of hydrogen molecules in metal-organic frameworks (MOFs) provides a promising way for hydrogen storage, in which the van der Waals (vdW) interaction plays an important role but cannot be described by the density functional theory (DFT). Using the vdW density functional (vdW-DF) method, we perform ab initio calculations for the MOF-5 crystal with one or multiple H2 adsorbed in its primitive cell. It is found that the binding with the organic linker is much smaller than with the metal oxide corner, which limits the H2 loading. We show that this can be improved significantly (from 5.50 to 10.39 kJ/mol) by replacing the H atoms of the organic linker with F atoms which causes extra electrostatic interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-247

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science 300, 1127 (2003).

DOI: 10.1126/science.1083440

Google Scholar

[2] J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, and O. M. Yaghi, Science 309, 1350 (2005).

Google Scholar

[3] T. Sagara, J. Klassen, and E. Ganz, J. Chem. Phys. 121, 12543 (2004).

Google Scholar

[4] K. Sillar, A. Hofmann, and J. Sauer, J. Am. Chem. Soc. 131, 4143 (2009).

Google Scholar

[5] S. K. Bhatia and A. L. Myers, Langmuir 22, 1688 (2006).

Google Scholar

[6] Lochan and Head-Gordon, Phys. Chem. Chem. Phys. 8, 1357 (2007).

Google Scholar

[7] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

DOI: 10.1103/physrevlett.95.109902

Google Scholar

[8] K. Sillar, A. Hofmann, and J. Sauer, J. Am. Chem. Soc. 131, 4143 (2009).

Google Scholar

[9] T. Sagara, J. Klassen, J. Ortony, and E. Ganz, J. Chem. Phys. 123, 014701 (2005).

Google Scholar

[10] D. C. Langreth et al, J. Phys.Condens. Matter 21, 084203 (2009).

Google Scholar

[11] G. Rom´an and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

Google Scholar

[12] L. Kong, Y. J. Chabal, and D. C. Langreth, Phys. Rev. B 83, 121402 (2011).

Google Scholar

[13] L. Kong, V. R. Cooper, N. Nijem, K. H. Li, J. Li, Y. J. Chabal, and D. C. Langreth, Phys. Rev. B 79, 081407 (2009).

Google Scholar

[14] P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009).

Google Scholar

[15] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

Google Scholar

[16] K. Laasonen, A. Pasquarello, C. Lee, R. Car, and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).

DOI: 10.1103/physrevb.47.10142

Google Scholar

[17] Y. Huang and S.-H. Ke, Appl. Mech. Mater. (Trans Tech Publications), to be published (2013).

Google Scholar

[18] I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980).

Google Scholar