Mutual Symbiotic Methanogenic Process between Acetotrophic and Hydrogenotrophic Methanogens during Anaerobic Digestion

Article Preview

Abstract:

Methaogens performing the final step in the anaerobic conversion of biomass to methane are members of the domain Archaea, which synthesis methane as the major product of their energy metabolism. Both acetotrophic and hydrogenotrophic methanogens are essential for the key step of methanogenesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

470-474

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Whitman, W.B., Bowen, T.L. and Boone, D.R.. 2006. The methanogenic bacteria. Prokaryotes 3, 165-207.

DOI: 10.1007/0-387-30743-5_9

Google Scholar

[2] Ferry, J.G. 1992. Methane from acetate. J. Bacteriol. 174: 489-5495.

Google Scholar

[3] Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2005) Thermal treatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, p.218–225.

DOI: 10.2166/wst.2006.236

Google Scholar

[4] Padmasiri, S.I., Zhang, J., Fitch, M., Norddahl, B., Morgenroth, E. & Raskin, L. 2007. Methanogenic populationdynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Research 41, 134-144.

DOI: 10.1016/j.watres.2006.09.021

Google Scholar

[5] Nielsen H.B., Mladenovska Z., Westermann P., Ahring B.K. 2004. Comparison of two-stage thermophilic (68℃/ 55℃) anaerobic digestion with one-stage thermophilic (55℃) digestion of cattle manure. Biotechnol Bioeng 86(3):291–300.

DOI: 10.1002/bit.20037

Google Scholar

[6] Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and molecular Biology Reviews 61, 262-280.

DOI: 10.1128/.61.2.262-280.1997

Google Scholar

[7] Schnurer, A. & Nordberg, A. 2008. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Science and Technology 57, 735-740.

DOI: 10.2166/wst.2008.097

Google Scholar

[8] Karlsson, A. & Eljertsson, J. 2012. Addition of HCl as a means to improve biogas production from protein-rich food industry waste. Biochemical Engineering Journal 61, 43-48.

DOI: 10.1016/j.bej.2011.12.003

Google Scholar

[9] Karakashev, D., Batstone, D.J., Trably, E. & Angelidaki, I. 2006. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Applied Environmental Microbiology 72, 5138-5141.

DOI: 10.1128/aem.00489-06

Google Scholar

[10] Drake, H.L., Kusel, K. & Matthies, C. 2006. Acetate prokaryotes. In: Dworkin, M. et al. The Prokaryotes. 3rd edition. pp.354-420. New York: Springer.

DOI: 10.1007/0-387-30742-7_13

Google Scholar

[11] Ryan, P., Forbes, C., McHugh, S., O'Reilly, C., Fleming, G.T.A. & Colleran, E. 2010. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions. Water Research 44, 4261-4269.

DOI: 10.1016/j.watres.2010.05.033

Google Scholar

[12] Hattori, S. 2008. Syntrophic acetate-oxidation microbes in methanogenic environments. Microbes and Environments 23, 118-127.

DOI: 10.1264/jsme2.23.118

Google Scholar