Resonance Rayleigh Scattering Study of the Interaction between Surfactant and Silver Nanoparticles

Article Preview

Abstract:

In the presence of sodium dodecyl benzene sulfate (SDBS) and under the irradiation of microwave, silver nitrate was reduced by alcohol to prepare stabile green and yellow silver nanoparticles in size of 41 nm and 71 nm respectively. Yellow silver nanoparticles have two resonance Rayleigh scattering (RRS) peaks at 440nm and 465nm. Green silver nanoparticles exhibit three RRS peaks at 420nm, 465nm and 585nm. Gray nanoparticles, which prepared in absence of SDBS, show a strong RRS at 465nm. Silver nanoparticles modified by dodecyl benzene sulfate (DBS) can react with cationic surfactant to exhibit novel RRS property. The concentration of some cationic surfactants is liner to the enhanced RRS intensity at 465nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-53

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Zhong, M. M. Maye, Adv. Mater., Vol. 13 (2001), p.1507.

Google Scholar

[2] F. Caruso, Adv. Mater., Vol. 13 (2001), p.11.

Google Scholar

[3] A. Henglein, M.Giersig, J. Phys. Chem. B, Vol. 104 (2000), p.6767.

Google Scholar

[4] N. Pradhan, A. Pal, Langmuir., Vol. 17 (2001), p.1800.

Google Scholar

[5] T. Pal, N. R. Jana, A. Pal, J. A. Creighton, J. Indian Chem. Soc.,Vol. 17 (2000), p.34

Google Scholar

[6] C.Pan, K.Pelzer, K.Philippot,B.Chaudret, J. Am.Chem.Soc., Vol. 123 (2001), p.7584.

Google Scholar

[7] R.A. Salkar, Pjeevanandam, G. Kataby, S.T. Aruna, J. Phys. Chem.B, Vol. 104 (2000), p.893.

Google Scholar

[8] B. S. Yin, H.Y.Ma, S.Y. Wang, S.H. Chen, J. Phys.Chem. B, (2003), Vol. 107, p.8898.

Google Scholar

[9] X.F. Qiu, J.Z.Xu, J.M. Zhu, J.J. Zhu, S.Xu,H.Y. Chen, J. Mater. Res., Vol. 18 (2003), p.1399.

Google Scholar

[10] Y. Guari, C. Thieuleux, A. Mehdi, C. R. Reye, Chem. Mater., Vol. 15 (2003), 2017.

Google Scholar

[11] K. Ohno, K. Koh,Y. Tsujii, T. Fukada, Angew. Chem. Int. Ed., Vol. 42 (2003), p.2751.

Google Scholar

[12] Y. Tan, L. Jiang, Y. Li, D. Zhu, J. Phys. Chem. B, Vol. 106 (2002), p.3131.

Google Scholar

[13] Z. L. Jiang, F. X. Zhong, T. S. Li, F. Li, Q.Y. Liu, Acta Chim. Sin., Vol. 59 (2001), p.538.

Google Scholar

[14] H. S. Shin, H. J.Yang, S. B. Kim, M. S. Lee, J. Colloid Interface Sci., Vol. 274 (2004), p.89.

Google Scholar

[15] H. Z. Huang, X. R. Yang, Carbohydrate Reserch, Vol. 339 (2004), p.2627.

Google Scholar

[16] L. Suber, I. Sondi, E. Matijevic, D.V. Goia, J. Colloid Interface Sci.,Vol. 288 (2005), p.489.

Google Scholar

[17] H. B. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Mater. Chem. Phys., Vol. 83 (2004), p.66.

Google Scholar

[18] X. C .Fu, W. X. Shen, Physical Chemistry, Beijing: Higher Education Press, (1995), p.1018.

Google Scholar

[19] L. Li, Cationic Surfactant and Nanotechnology, Beijing: Chemical Industry Press, (2003), p.155.

Google Scholar