Magnetic Nanoparticles Arrays for Quantum Calculations

Article Preview

Abstract:

In frames of a quantum computer implementation, the ordered array of magnetic dipoles nanoparticles is considered. The phase space calculated for system of dipoles, which interact through long-range magnetostatic field. The behavior of nanoarchitectures in an external magnetic field is studied. The degeneracy of the equilibrium magnetic states depending on the value of an external magnetic field and the spin excess of configurations are determined. The presence of degeneration is a classical analog of quantum superposition, and distribution of probability of magnetic state is a classical representation of such quantum phenomena as entanglement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

102-106

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Steane, Quantum computing. Rep. Prog. Phys. 61 (1998) 117–173.

Google Scholar

[2] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O'Brien, Quantum computers, Nature. 464 (2010) 45-53.

DOI: 10.1038/nature08812

Google Scholar

[3] D.A. Meyer, Physical quantum algorithms, Comput. Phys. Commun. 146 (2002) 295-301.

Google Scholar

[4] A. Ekert, R. Jozsa, Quantum computation and Shor's factoring algorithm, Rev. Mod. Phys. 68 (1996) 733-753.

DOI: 10.1103/revmodphys.68.733

Google Scholar

[5] Y. Manin, Computable and Uncomputable, Sovetskoye Radio, Moscow, 1980, p.128.

Google Scholar

[6] R.P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics. 21 (1982) 467-488.

Google Scholar

[7] D.P.DiVincenzo, The Physical Implementation of Quantum Computation, Fortschr. der Phys. 48,9-11 (2000) 771-783.

DOI: 10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e

Google Scholar

[8] J. Suh, J. Chang, E.K. Kim, M.V. Sapozhnikov, V.L. Mironov, A.A. Fraerman, J. phys. stat. sol. (a). 5-205 (2007) 1043–1046.

DOI: 10.1002/pssa.200776457

Google Scholar

[9] J.G. Zhu, Y. Zheng, G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory, Journal of Applied Physics. 87 (2000) 6668-6674.

DOI: 10.1063/1.372805

Google Scholar

[10] Y.J. Chen, T.L. Huang, S.H. Leong, S.B. Hu, K.W. Ng, Z.M. Yuan, B.Y. Zong, B. Liu, V. Ng, A study of multirow-per-track bit patterned media by spinstand testing and magnetic force microscopy, Applied Physics Letters. 93 (2008) 102501-102504.

DOI: 10.1063/1.2978326

Google Scholar

[11] C.M. Schneider, A. Kuksov, A. Krasyuk, A. Oelsner, D. Neeb, S.A. Nepijko, G. Schenhense, I. Mench, Kaltofen, J. Morais, C. de Nadae, Incoherent magnetization rotation observed in subnanosecond time-resolving x-ray photoemission electron microscopy, Applied Physics Letters. 85-2 (2004) 2562-2564.

DOI: 10.1063/1.1790606

Google Scholar

[12] M. Buess, R. Hellinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M.R. Scheinfein, D. Weiss, C.H. Back, Fourier Transform Imaging of Spin Vortex Eigenmodes, Physical Review Letters. 93 (2004) 077207-077211.

DOI: 10.1103/physrevlett.93.129902

Google Scholar

[13] J. Raabe, C. Quitmann, C.H. Back, F. Nolting, S. Johnson, C. Buehler, Quantitative Analysis of Magnetic Excitations in Landau Flux-Closure Structures Using Synchrotron-Radiation Microscopy, Physical Review Letters. 94 (2005) 217204-217208.

DOI: 10.1103/physrevlett.94.217204

Google Scholar

[14] R.P. Cowburn, A.O. Adeyeye, M.E. Welland, Configurational Anisotropy in Nanomagnets, Physical Review Letters. 81 (1998) 5414-5417.

DOI: 10.1103/physrevlett.81.5414

Google Scholar

[15] C.A.F. Vaz, L. Lopez-Diaz, M. Kleui, J.A.C. Bland, T.L. Monchesky, J. Unguris, Z. Cui, Direct observation of remanent magnetic states in epitaxial fcc Co small disks, Physical Review B. 67 (2003) 140405-140409.

DOI: 10.1103/physrevb.67.140405

Google Scholar

[16] C.A.F. Vaz, M. Kleui, L.J. Heyderman, C. David, F. Nolting, J.A.C. Bland, Multiplicity of magnetic domain states in circular elements probed by photoemission electron microscopy, Physical Review B. 72 (2005) 224426-224428.

DOI: 10.1103/physrevb.72.224426

Google Scholar

[17] J. Rothman, M. Klui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleloch, J.A.C. Bland, Z. Cui, R. Speaks, Observation of a Bi-Domain State and Nucleation Free Switching in Mesoscopic Ring Magnets, Physical Review Letter. 86 (2001) 1098-1101.

DOI: 10.1103/physrevlett.86.1098

Google Scholar

[18] Y.P. Ivanov, A.I. Il'in, E.V. Pustovalov, K.V. Nefedev, L.A. Chebotkevich, Effect of the shape anisotropy and configurational anisotropy on the magnetic structure of ferromagnetic nanodots, The Physics of Metals and Metallography. 113-3 (2012) 222-227.

DOI: 10.1134/s0031918x12030064

Google Scholar

[19] Bael, M.J. Van, Look, L. Van, K. Temst, M. Lange, J. Bekaert, U. May, G. Guentherodt, V.V. Moshchalkov, Y. Bruynseraede, Flux pinning by regular arrays of ferromagnetic dots, Physica C, 332 (2000) 12-19.

DOI: 10.1016/s0921-4534(99)00637-1

Google Scholar