[1]
E. Leith, Overview of the developments of holography, JIST (1997) 201–204
Google Scholar
[2]
E. Leith, and J. Upatnieks, Wavefront Reconstruction with Continuous-Tone Objects, JOSA 53 (1963) 1377-1381.
DOI: 10.1364/josa.53.001377
Google Scholar
[3]
I. Yamaguchi, and T. Zhang, Phase-shifting digital holography, Opt. Lett. 22 (1997) 1268-1270
Google Scholar
[4]
D. Gabor, A new microscopic principle, Nature 161 (1948) 777-778.
Google Scholar
[5]
M. Tegze, and G. Faigel, X-ray holography with atomic resolution, Nature 380 (1996) 49-51.
DOI: 10.1038/380049a0
Google Scholar
[6]
P. Korecki, G. Materlik, and J. Korecki, Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging, Phys. Rev. Lett. 86 (2001) 1534-1537.
DOI: 10.1103/physrevlett.86.1534
Google Scholar
[7]
G. Pedrini, P. Fröning, H. Fessler, and H. J. Tiziani, In-line digital holographic interferometry, Appl. Opt. 37 (1998) 6262-6269.
DOI: 10.1364/ao.37.006262
Google Scholar
[8]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Digital in-line holography for biological applications, PNAS 98 (2001) 11301-11305.
DOI: 10.1073/pnas.191361398
Google Scholar
[9]
J. Garcia-Sucerqui, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Digital in-line holographic microscopy, Appl. Opt. 45 (2006) 836-850.
DOI: 10.1364/ao.45.000836
Google Scholar
[10]
M. H. Maleki and A. J. Devaney, Noniterative reconstruction of complex-valued objects from two intensity measurements, Opt. Eng. 33 (1994) 3243-3253.
DOI: 10.1117/12.181248
Google Scholar
[11]
Y. Zhang and X. Zhang, Reconstruction of a complex object from two in-line holograms, Opt. Express 11 (2003) 572-578.
DOI: 10.1364/oe.11.000572
Google Scholar
[12]
Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, Reconstruction of in-line digital holograms from two intensity measurements, Opt. Lett. 29 (2004) 1787-1789.
DOI: 10.1364/ol.29.001787
Google Scholar
[13]
G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheeidan, Generalized in-line digital holographic technique based on intensity measurements at two different planes, Appl. Opt. 47 (2008) 711-717.
DOI: 10.1364/ao.47.000711
Google Scholar
[14]
B. Das and C. S. Yelleswarapu, Dual plane in-line digital holographic microscopy, Opt. Lett. 35 (2010) 3426-3428.
DOI: 10.1364/ol.35.003426
Google Scholar
[15]
P. Bao, G. Pedrini, and W. Osten, Phase retrieval using multiple illumination wavelengths, Opt. Lett. 33 (2008) 309-311.
DOI: 10.1364/ol.33.000309
Google Scholar
[16]
P. Bao, G. Pedrini, and W. Osten, Optical surface profile measurement using phase retrieval by tuning the illumination wavelength, Opt. Comm. 285 (2012) 5029-5036.
DOI: 10.1016/j.optcom.2012.08.018
Google Scholar
[17]
J. R. Fienup, Phase retrieval algorithms: a comparison, Appl. Opt. 21 (1982) 2758-2769.
Google Scholar
[18]
Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm, Opt. Express 11 (2003) 3234-3241.
DOI: 10.1364/oe.11.003234
Google Scholar
[19]
T. Latychevskaia and H. W. Fink, Solution to the twin image problem in holography, Phys. Rev. Lett. 98 (2007) 233901.
DOI: 10.1103/physrevlett.98.233901
Google Scholar
[20]
L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, Twin image elimination from two in-line holograms via phase retrieval, Chin. Opt. Lett. 10 (2012) 060902-1-3.
DOI: 10.3788/col201210.060902
Google Scholar
[21]
L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Wang, Iterative solution to twin image problem in-line digital holography, accepted by Optics and Lasers in Engineering.
DOI: 10.1016/j.optlaseng.2012.12.007
Google Scholar
[22]
C. Guo, Q. Yue, G. Wei, L. Lu, and S. Y., Laplacian differential reconstruction of in-line holograms recorded at two different distances, Opt. Lett. 33 (2008) 1945-1947.
DOI: 10.1364/ol.33.001945
Google Scholar
[23]
D. Ghiglia, and L. Romero, Minimum Lp-norm two-dimensional phase unwrapping, JOSA A 13 (1996) 1999-2013.
DOI: 10.1364/josaa.13.001999
Google Scholar