Activation of Solid and Molten Electrolytes and their Relaxation

Article Preview

Abstract:

On exposure of high-voltage microsecond pulsed fields, the molten and solid electrolytes are transited into a prolonged non-equilibrium state with increased electrical conductivity and disappeared characteristic peaks in Raman spectra. During the multistep relaxation of non-equilibrium electrolytes the initial conductivity and Raman spectra are restored to the values and patterns characteristic for equilibrium system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

146-150

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A Carpio., F.C Kibler F.C., L.A King., K. Torklep. and H.A Oye, Transport Properties of Acid AlCl3-LiCl-NaCl Melts (Viscosity Electrical Conductivity and Density), in: The Electrochemical Society, Fall Meeting, Extended Abstracts, vol. 80 (1980), 1669-1670.

Google Scholar

[2] S.Y. Yoon and D.R. Sadoway, "Spectroscopic and Electrochemical Studies of Molten Salt Electrolysis of Aluminum and Magnesium, in" Proceedings of the Joint International Symposium on Molten Salts, G. Mamantov et al.(Eds), The Electrochemical Society, Proc. Vol., Pennington NJ, 1987, vol.87, pp.1011-1017.

DOI: 10.1149/198707.1011pv

Google Scholar

[3] S.Y. Yoon, J.H. Flint, G.J. Kipouros, and D.R. Sadoway, Raman Scattering Studies of Magnesium Electrolysis, Light Metals 1986, R.E. Miller (Ed), TMS/AIME, Warrendale PA, 1986, pp.1009-1012.

Google Scholar

[4] M.H. Brooker and C.H. Huang, Raman Spectroscopic Studies of Structural Properties of Solid and molten States of magnesium Chloride-Alkali Metal Chloride Systems," Can. J. Chem. 58 (1980), 168-179.

DOI: 10.1139/v80-027

Google Scholar

[5] M Wilson and P A Madden, Short- and intermediate-range order in MCl2 melts: the importance of anionic polarization, J. Phys.: Condens. Matter, 5, 1(993) 6833-6844.

DOI: 10.1088/0953-8984/5/37/004

Google Scholar

[6] Rytter E. and Oye H. A., Cyvin S. J. and Cyvin B. N., Klaboe P. Raman spectra of AlCl3-KCl and trends in species formation, J. Inorg. and Nuclear Chem. 35 (1973).1185-1198.

DOI: 10.1016/0022-1902(73)80191-5

Google Scholar

[7] Klaeboe P., Rytter E. and Sjgoren C.E. Infrared high temperature spectra of aluminum chloride and related species, J. Molec. Struct. 113 (1984) 213-226.

DOI: 10.1016/0022-2860(84)80146-5

Google Scholar

[8] T. Inui, Sh.Takeda, Y. Shirakawa, Sh. Tamaki, Y. Waseda, Y., and Y. Yamaguchi, Phys. Soc. Jpn. 60 (1991) 3025-3032.

DOI: 10.1143/jpsj.60.3025

Google Scholar

[9] K Tankeshwar and M P Tosi 1991 J. Phys.: Condens. Matter 3 (1991) 7511-7518.

Google Scholar

[10] O.M. Shabanov and R. T.Kachaev, High-Voltage conductivity of conductors a-RbAg4I5, a-KAg4I5, a-KCu4I5 superionic conductors//Tech. Phys. 57 (2012) 1157-1161.

DOI: 10.1134/s106378421208021x

Google Scholar

[11] S.M. Gadzhiev, O.M. Shabanov, A.O. Magomedova. Limiting conductivity and structure of molten alkali earth metal chlorides. Russ. Electrochemistry 39 (2003) 1212-1217.

Google Scholar

[12] O.M. Shabanov, S.M. Gadzhiev, F.O. Magomedova, S.A. Dzhamalova, High-voltage limiting conductivities of molten mixture KCI-MCI2 (M=Ca,Sr,Ba), Russian J. Electrochem. 39 (2003) 425-430.

Google Scholar

[13] O.M. Shabanov, S.M. Gadzhiev, A.O. Magomedova, S.A. Dzhamalova, Electroconductivity, electroluminescence Spectra, and activation of molten MCl2 + KCl (M = Ca, Sr, Ba) in high electric fields, Chem. Phys. Lett. 380 (2003) 352 – 358.

DOI: 10.1016/j.cplett.2003.09.005

Google Scholar

[14] I.M. Diller. Activated molten salts. Nature, 224 (1969) 877-879.

Google Scholar

[15] S.M. Gadzhiev, O.M. Shabanov, A.O. Magomedova, S.D. Dzhamalova, Russ. J. Electrochem. 39 (2003) 425-430.

Google Scholar