[1]
D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 40 (1999) 788-791.
DOI: 10.1038/44565
Google Scholar
[2]
L. Elden, Matrix Methods in Data Mining and Pattern Recognition, Chap. 9, SIAM, Philadelphia, 2007.
Google Scholar
[3]
D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, Adv. Neural Info. Proc. Syst. 13 (2001) 552-562.
Google Scholar
[4]
S. Park, User-focused automatic document summarization using non-negative matrix factorization and pseudo relevance feedback, Proc. Comp. Sci. Inf. Technol. 2 (2011) 101-105.
Google Scholar
[5]
P.O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mac. Learn. Res. 5 (2004) 1457-1469.
Google Scholar
[6]
B. Wang, M.D. Plumbley, Investigating single-channel audio source separation methods based on non-negative matrix factorization, Proc. ICA Res. Net. Int. Workshp. (2006) 17-20.
Google Scholar
[7]
N. Yamamoto, J. Murakami, C. Okuma, Y. Shigeto, S. Saito, T. Izumi, N. Hayashida, Application of multi-dimensional principal component analysis to medical data, Int. J. Eng. Phys. Sci. 6 (2012) 260-266.
Google Scholar
[8]
K.J. Ottenbacher, Y. Hsu, C.V. Granger, R.C. Fiedler, The reliability of the Functional Independence Measure: a quantitative review, Arch. Phys. Med. Rehab. 77 (1996) 1226-1232.
DOI: 10.1016/s0003-9993(96)90184-7
Google Scholar
[9]
L. Claesson, E. Svensson, Measures of order consistency between paired ordinal data: application to the Functional Independence Measure and Sunnaas index of ADL, J. Rehab. Med. 33 (2001) 137-144.
DOI: 10.1080/165019701750166014
Google Scholar
[10]
Y.-D. Kim, S. Choi, Nonnegative Tucker decomposition, Proc. Conf. Comp. Vis. Pat. Rec. (2007) 1-8.
Google Scholar