Annealing Temperature Effect on the Photoluminescence Properties of Er-Doped Silicon-Rich Silicon Oxide Films

Article Preview

Abstract:

Er-dispersed silicon-rich silicon oxide (SRSO:Er) films have been fabricated by pulsed laser ablation technique. After deposition, the films were annealed in Ar ambient at different temperatures for 30 min to generate SiO2 films containing Si nanocrystals (Si-nc) and Er ions. The relationship between Er photoluminescence (PL) intensity and annealing temperature was investigated by PL spectrums analysis at room temperature. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometer (EDS) were used to observe the samples. Experimental results show that high-density Si-nc generate when the annealing temperature increases to 1000°C, however, PL intensity of Er decreases due to Er atoms segregated out in SiO2 film and formed large particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-19

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ennen, J. Schneider, G. Pomrenke, et al.; Appl. Phys. Lett. 43, 943 (1983).

Google Scholar

[2] S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna; Phys. Rev. B 49, 16313 (1994).

DOI: 10.1103/physrevb.49.16313

Google Scholar

[3] A. Polman. J. Appl. Phys. 82, 1 (1997).

Google Scholar

[4] A. Janotta, M. Schmidt, R. Janssen, M. Stutzmann, and C. Buchal; Phys. Rev. B 68, 165207 (2003).

Google Scholar

[5] T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, Appl. Phys. Lett. 65, 983 (1994)APPLAB000065000008000983000001.

Google Scholar

[6] W. Henley, Y. Koshka, J. Lagowski, and J. Siejka , J. Appl. Phys. 87, 7848 (2000).

Google Scholar

[7] P. G. Kik, M. L. Brongersma, and A. Polman. Appl. Phys. Lett. 76, 2325 (2000).

Google Scholar

[8] C. Li, K. Kondo, T. Makimura, and K. Murakami; Jpn. J. Appl. Phys. 42, 3424 (2003).

Google Scholar

[9] J. S.Ha, G.Y. Song, S. Lee, Y.R. Jang, K.H. Yoo, J.S. Jeon, and S.H. Nam; Appl. Phys. A 79, 1485 (2004).

Google Scholar

[10] G. W. Adeola, H. Rinnert, P. Miska, and M. Vergnat; J. Appl. Phys.102, 53515(2007).

Google Scholar

[11] C. L. Heng, O. H. Y. Zalloum, J. Wojcik, T. Roschuk, and P. Mascher; J. Appl. Phys.103, 24309(2008).

Google Scholar

[12] Y. R. Jang, K. H. Yoo, J. S. Ahn, C. Kim and S. M. Park; J. Appl. Phys. 106, 63521(2009).

Google Scholar

[13] N. A. Sobolev, Semiconductors 44, 1(2010).

Google Scholar

[14] J. J. liang, J.Y.wang, D. W. Cheng, G. Z. wang, and Y.Chang; ACTA PHYSICA SINICA; 49, 1386(2000)

Google Scholar