Experimental Studies on H2-Rich Gas Production by Co-Gasification of Coal and Biomass in an Intermittent Fluidized Bed Reactor

Article Preview

Abstract:

This paper illustrates the experimental results of co-gasification of biomass and coal in an intermittent fluidized bed reactor, aiming to investigate the effects of gasification temperature (T) and steam to biomass mass ratio (SBMR) on the composition, yield, low heating value (LHV) and carbon conversion efficiency of the product gas. The results show that H2-rich gas with a high LHV is generated, in the range of 12.22-18.67 MJ/Nm3, and the H2 content in the product gas is in the range of 28.7-51.4%. Increases in temperature lead to an increase in CO and H2 content. The H2/CO molar ratio in the product gas is close to 1 at temperature above 925 °C. With steam addition, the H2 content increases gradually, while the content of CO increases first and then decrease correspondingly. The molar ratio of H2/CO is close to 1 with the smallest supplied amount of steam addition (SBMR =0.4).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

1127-1131

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Abuadala, I. Dincer and G.F. Naterer: Int. J. Hydrogen Energy.Vol.35 (2010), p.4981.

Google Scholar

[2] G. Ruoppolo, P. Ammendola, R. Chirone and F. Miccio: Waste Manage.Vol.32 (2012), p.724.

Google Scholar

[3] J. Fermoso, B. Arias, M.V. Gil, M.G. Plaza, C. Pevida, J.J. Pis, and F. Rubiera: Bioresour. Technol. Vol.101 (2010), p.3230.

DOI: 10.1016/j.biortech.2009.12.035

Google Scholar

[4] K.Li, R. Zhang and J.Bi: Int. J. Hydrogen Energy.Vol.35 (2010), p.2722.

Google Scholar

[5] J.F. Vélez, F.Chejne, C.F. Valdés, E.J. Emery and C.A. Londoño: Fuel.Vol.88 (2009), p.424.

Google Scholar

[6] M.P. Aznar, M.A. Caballero, J.A. Sancho and E. France´s: Fuel Process.Technol.Vol.87 (2006), p.409.

Google Scholar

[7] R.N .Andre´, F.Pinto, C.Franco, M. Dias, I. Gulyurtlu, M.A.A. Matos and I. Cabrita: Fuel.Vol.84 (2004), p.1635.

Google Scholar

[8] L.Wang, Y.Dun, X.Xiang, Z.Jiao and T.Zhang: Int. J. Hydrogen Energy.Vol.36 (2011), p.11677.

Google Scholar

[9] V. Skoulou, A. Zabaniotou, G. Stavropoulos and G. Sakelaropoulos: Int. J. Hydrogen Energy.Vol.33 (2008), p.1189.

Google Scholar

[10] N.Gao, A. Li, C. Quan and F.Gao: Int. J. Hydrogen Energy.Vol.33 (2008), p.5433.

Google Scholar

[11] N.Gao, A.Li, C.Quan, Y.Qu and L.Mao: Int. J. Hydrogen Energy.Vol.37 (2012), p.9612.

Google Scholar

[12] J.Zhou , Q.Chen, H.Zhao, X.Cao, Q.Mei, Z.Luo and K.Cen: Biotechnol. Adv. Vol.27 (2009), p.608.

Google Scholar

[13] A. Demirbas: J. Anal. Appl. Pyrolysis.Vol.72 (2004), p.245.

Google Scholar

[14] Y. Wang and C.M. Kinoshita: Sol. Energy.Vol.49 (1992), p.155.

Google Scholar