[1]
O. Sandstrom, E. Neuman, P. Karas, Effects of a bleached pulp-mill effluent on growth and gonad function in baltic coastal fish, Water Science and Technology, 20 (1988) 107-118.
DOI: 10.2166/wst.1988.0051
Google Scholar
[2]
W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter, Environmental science & technology, 37 (2003) 5701-5710.
DOI: 10.1021/es034354c
Google Scholar
[3]
S. Determann, J.M. Lobbes, R. Reuter, J. Rullkotter, Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria, Marine Chemistry, 62 (1998) 137-156.
DOI: 10.1016/s0304-4203(98)00026-7
Google Scholar
[4]
K. Mopper, C.A. Schultz, Fluorescence as a possible tool for studying the nature and water column distribution of doc components, Marine Chemistry, 41 (1993) 229-238.
DOI: 10.1016/0304-4203(93)90124-7
Google Scholar
[5]
E.B.H. Santos, Filipe, O.M.S., Duarte, R.M.B.O., Pinto, H., Duarte, A.C., Fluorescence as a tool for tracing the organic contamination from pulp mill effluents in surface waters, Acta Hydrochimica Et Hydrobiologica, 28 (2000) 364-371.
DOI: 10.1002/1521-401x(20017)28:7<364::aid-aheh364>3.0.co;2-m
Google Scholar
[6]
K.M. Cawley, K.D. Butler, G.R. Aiken, L.G. Larsen, T.G. Huntington, D.M. McKnight, Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed, Marine pollution bulletin, 64 (2012) 1678-1687.
DOI: 10.1016/j.marpolbul.2012.05.040
Google Scholar
[7]
L.G. Thygesen, Å. Rinnan, S. Barsberg, J.K.S. Møller, Stabilizing the PARAFAC decomposition of fluorescence spectra by insertion of zeros outside the data area, Chemometrics and Intelligent Laboratory Systems, 71 (2004) 97-106.
DOI: 10.1016/j.chemolab.2003.12.012
Google Scholar
[8]
R. Bro, M. Vidal, EEMizer: Automated modeling of fluorescence EEM data, Chemometrics and Intelligent Laboratory Systems, 106 (2011) 86-92.
DOI: 10.1016/j.chemolab.2010.06.005
Google Scholar
[9]
C.A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Marine Chemistry, 82 (2003) 239-254.
DOI: 10.1016/s0304-4203(03)00072-0
Google Scholar
[10]
C.A. Stedmon, S. Markager, Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis, Limnology and Oceanography, 50 (2005) 686-697.
DOI: 10.4319/lo.2005.50.2.0686
Google Scholar
[11]
M. Bilal, A. Jaffrezic, Y. Dudal, C. Le Guillou, S. Menasseri, C. Walter, Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study, J Agric Food Chem, 58 (2010) 3093-3100.
DOI: 10.1021/jf903872r
Google Scholar
[12]
R.M. Cory, D.M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environmental science & technology, 39 (2005) 8142-8149.
DOI: 10.1021/es0506962
Google Scholar