[1]
R. Croppa and J. Norbury, Simple predator–prey interactions control dynamics in a plankton food web model, Ecol. Model. 220 (2009) 1552-1565.
DOI: 10.1016/j.ecolmodel.2009.04.003
Google Scholar
[2]
J.X. Kang, Omega-3: a link between global climate change and human health, Biotechnol. Adv. 29 (2011) 388-390.
Google Scholar
[3]
C.B. Mouw, J.A. Yoder and S.C. Doney, Impact of phytoplankton community size on a linked global ocean optical and ecosystem model, J. Marine. Syst. 89 (2012) 61-75.
DOI: 10.1016/j.jmarsys.2011.08.002
Google Scholar
[4]
T. Hallam, C. Clark and G. Jordan, Effects of toxicants on populations: a qualitative approach II: First order kinetics, J. Math. Biol. 18 (1983) 25–37.
DOI: 10.1007/bf00275908
Google Scholar
[5]
A.J. Windust, J.L.C. Wright and B McLachlan, The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae, Marine Biology. 126 (1996) 19-25.
DOI: 10.1007/bf00571373
Google Scholar
[6]
F.D. Hulot and J. Huisman, Allelopathic interactions between phytoplankton species: the role of heterotrophic bacteria and mixing intensity, Limnology and Oceanography. 49 (2004) 1424-1434.
DOI: 10.4319/lo.2004.49.4_part_2.1424
Google Scholar
[7]
M. Gledhill and R.W. Van Kirk, Modeling effects of toxin exposure in fish on long-term population size, with an application to selenium toxicity in bluegill (Lepomis macrochirus), Ecol Model. 222 (2011) 3587-3597.
DOI: 10.1016/j.ecolmodel.2011.08.023
Google Scholar
[8]
J.M. Burkholder and H. G. Marshall, Toxigenic pfiesteria species-updates on biology, ecology, toxins, and impacts, Harmful Algae. 14 (2012) 196-230.
DOI: 10.1016/j.hal.2011.10.022
Google Scholar
[9]
J.P. Grovera, D.L. Roelkeb and B.W. Brooks, Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: A focus on historical Prymnesium parvum blooms in a Texas reservoir, Ecol. Model. 227 (2012) 147-161.
DOI: 10.1016/j.ecolmodel.2011.12.012
Google Scholar
[10]
J. Maynard-Smith, Models in Ecology, Cambridge University Press, Cambridge, UK, 1974.
Google Scholar
[11]
J. Solé, E. García-Ladon, P. Ruardij and M. Estrada, Modelling allelopathy among marine algae, Ecol. Model. 183 (2005) 373-384.
DOI: 10.1016/j.ecolmodel.2004.08.021
Google Scholar
[12]
R. Pal, D. Basu and M. Banerjee,Modelling of phytoplankton allelopathy with Monod–Haldane type functional response-a mathematical study, Biosystems. 95 (2009) 243-253.
DOI: 10.1016/j.biosystems.2008.11.002
Google Scholar
[13]
B. Mukhopadhyay and R. Bhattacharyya, Modelling phytoplankton allelopathy in a nutrient–plankton model with spatial heterogeneity, Ecol. Model.198 (2006) 163–173.
DOI: 10.1016/j.ecolmodel.2006.04.005
Google Scholar
[14]
M.Banerjee and E. Venturino, A phytoplankton–toxic phytoplankton–zooplankton model, Ecological Complexity. 8 (2011) 239–248.
DOI: 10.1016/j.ecocom.2011.04.001
Google Scholar
[15]
J. Yang and M. Zhao, Complex behavior in a fish algae consumption model with impulsive control strategy, Discrete Dynamics in Nature and Society. (2011) ,163541.
DOI: 10.1155/2011/163541
Google Scholar