Modeling the Role of Toxic Substances in a Phytoplankton-Toxic Phytoplankton-Zooplankton System

Article Preview

Abstract:

In this paper, a mathematical model has been proposed, which consists of three variables: non-toxic phytoplankton (NTP), toxin producing phytoplankton (TPP) and zooplankton. In this model, an Monod- Haldane functional response is utilized to identify the grazing process of zooplankton due to the phytoplankton toxicity. The product of square of TPP density with square of NTP density is to depict the allelopathic influence on NTP. Numerical analysis indicates that the phytoplankton toxicity has a significant influence on the dynamical complexity and species biomass level through bifurcation diagrams. All these results are expected to be of significance in exploration of the dynamical complexity of ecosystems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

1600-1603

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Croppa and J. Norbury, Simple predator–prey interactions control dynamics in a plankton food web model, Ecol. Model. 220 (2009) 1552-1565.

DOI: 10.1016/j.ecolmodel.2009.04.003

Google Scholar

[2] J.X. Kang, Omega-3: a link between global climate change and human health, Biotechnol. Adv. 29 (2011) 388-390.

Google Scholar

[3] C.B. Mouw, J.A. Yoder and S.C. Doney, Impact of phytoplankton community size on a linked global ocean optical and ecosystem model, J. Marine. Syst. 89 (2012) 61-75.

DOI: 10.1016/j.jmarsys.2011.08.002

Google Scholar

[4] T. Hallam, C. Clark and G. Jordan, Effects of toxicants on populations: a qualitative approach II: First order kinetics, J. Math. Biol. 18 (1983) 25–37.

DOI: 10.1007/bf00275908

Google Scholar

[5] A.J. Windust, J.L.C. Wright and B McLachlan, The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae, Marine Biology. 126 (1996) 19-25.

DOI: 10.1007/bf00571373

Google Scholar

[6] F.D. Hulot and J. Huisman, Allelopathic interactions between phytoplankton species: the role of heterotrophic bacteria and mixing intensity, Limnology and Oceanography. 49 (2004) 1424-1434.

DOI: 10.4319/lo.2004.49.4_part_2.1424

Google Scholar

[7] M. Gledhill and R.W. Van Kirk, Modeling effects of toxin exposure in fish on long-term population size, with an application to selenium toxicity in bluegill (Lepomis macrochirus), Ecol Model. 222 (2011) 3587-3597.

DOI: 10.1016/j.ecolmodel.2011.08.023

Google Scholar

[8] J.M. Burkholder and H. G. Marshall, Toxigenic pfiesteria species-updates on biology, ecology, toxins, and impacts, Harmful Algae. 14 (2012) 196-230.

DOI: 10.1016/j.hal.2011.10.022

Google Scholar

[9] J.P. Grovera, D.L. Roelkeb and B.W. Brooks, Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: A focus on historical Prymnesium parvum blooms in a Texas reservoir, Ecol. Model. 227 (2012) 147-161.

DOI: 10.1016/j.ecolmodel.2011.12.012

Google Scholar

[10] J. Maynard-Smith, Models in Ecology, Cambridge University Press, Cambridge, UK, 1974.

Google Scholar

[11] J. Solé, E. García-Ladon, P. Ruardij and M. Estrada, Modelling allelopathy among marine algae, Ecol. Model. 183 (2005) 373-384.

DOI: 10.1016/j.ecolmodel.2004.08.021

Google Scholar

[12] R. Pal, D. Basu and M. Banerjee,Modelling of phytoplankton allelopathy with Monod–Haldane type functional response-a mathematical study, Biosystems. 95 (2009) 243-253.

DOI: 10.1016/j.biosystems.2008.11.002

Google Scholar

[13] B. Mukhopadhyay and R. Bhattacharyya, Modelling phytoplankton allelopathy in a nutrient–plankton model with spatial heterogeneity, Ecol. Model.198 (2006) 163–173.

DOI: 10.1016/j.ecolmodel.2006.04.005

Google Scholar

[14] M.Banerjee and E. Venturino, A phytoplankton–toxic phytoplankton–zooplankton model, Ecological Complexity. 8 (2011) 239–248.

DOI: 10.1016/j.ecocom.2011.04.001

Google Scholar

[15] J. Yang and M. Zhao, Complex behavior in a fish algae consumption model with impulsive control strategy, Discrete Dynamics in Nature and Society. (2011) ,163541.

DOI: 10.1155/2011/163541

Google Scholar