Activity of Fe2O3 and its Effect on Co Oxidation in the Chemical Looping Combustion: An Theoretical Account

Article Preview

Abstract:

The study focuses on Fe2O3 oxygen carrier for CO oxidation in chemical-looping combustion (CLC) system. Density functional theory (DFT) calculations were performed to detect the performance of Fe2O3 during CLC of CO. Reaction mechanism between CO and Fe2O3 was explored in details, which demonstrates that Fe2O3 with more low-fold O atoms on the surface could promote the activity of the Fe-based oxygen carrier in CLC system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2040-2044

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hossain M, de Lasa H. Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem Eng Sci 2008; 63: 4433-4451.

DOI: 10.1016/j.ces.2008.05.028

Google Scholar

[2] de Diego L F, Garcia-Labiano F, Adanez J, Gayan P, Abad A, Corbella B M, Palacios J M. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 2004; 83: 1749-1757.

DOI: 10.1016/j.fuel.2004.03.003

Google Scholar

[3] Wolf J, Anheden M, Yan J. Comparison of nickel- and iron-based oxygen carriers in chemical looping combustion for CO capture in power generation. Fuel 2005; 84: 993-1006.

DOI: 10.1016/j.fuel.2004.12.016

Google Scholar

[4] Johansson E, Mattisson T, Lyngfelt A, Thunman H. A 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel 2006; 85: 1428-1438.

DOI: 10.1016/j.fuel.2006.01.010

Google Scholar

[5] Ryden M, Lyngfelt A, Mattisson T. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 2006; 85: 1631-1641.

DOI: 10.1016/j.fuel.2006.02.004

Google Scholar

[6] Dahl I M, Bakken E, Larring Y, Spjelkavik A I, Håkonsen S F, Blom R. On the development of novel reactor concepts for chemical looping combustion. Energy Procedia 2009; 1: 1513-1519.

DOI: 10.1016/j.egypro.2009.01.198

Google Scholar

[7] Dediego L, Garcialabiano F, Gayan P, Celaya J, Palacios J, Adanez J. Operation of a 10kWth chemical-looping combustor during 200h with a CuO–Al2O3 oxygen carrier. Fuel 2007; 86: 1036-1045.

DOI: 10.1016/j.fuel.2006.10.004

Google Scholar

[8] Dueso C, García-Labiano F, Adánez J, de Diego L F, Gayán P, Abad A. Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel 2009; 88: 2357-2364.

DOI: 10.1016/j.fuel.2008.11.026

Google Scholar

[9] Franca R V, Thursfield A, Metcalfe I S. La0.6Sr0.4Co0.2Fe0.8O3−δ microtubular membranes for hydrogen production from water splitting. J Membrane Sci 2012; 389: 173-181.

DOI: 10.1016/j.memsci.2011.10.027

Google Scholar

[10] Echegoyen Y, Suelves I, Lázaro M J, Sanjuán M L, Moliner R. Thermo catalytic decomposition of methane over Ni–Mg and Ni–Cu–Mg catalysts. Applied Catalysis A: General 2007; 333: 229-237.

DOI: 10.1016/j.apcata.2007.09.012

Google Scholar

[11] Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel 2009; 88: 683-690.

DOI: 10.1016/j.fuel.2008.09.016

Google Scholar

[12] Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical – Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers – Oxygen release and reactivity with methane. Fuel 2011; 90: 941-950.

DOI: 10.1016/j.fuel.2010.11.044

Google Scholar

[13] Bermúdez J M, Fidalgo B, Arenillas A, Menéndez J A. CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis. Fuel 2012; 94: 197-203.

DOI: 10.1016/j.fuel.2011.10.033

Google Scholar

[14] Wang B, Zhao H, Zheng Y, Liu Z, Yan R, Zheng C. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers. Fuel Process Technol 2012; 96: 104-115.

DOI: 10.1016/j.fuproc.2011.12.030

Google Scholar

[15] Gayán P, Adánez-Rubio I, Abad A, de Diego L F, García-Labiano F, Adánez J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel 2012; 16] Hossain M M, Sedor K E, de Lasa H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal-support interaction. Chem Eng Sci 2007; 62: 5464-5472.

DOI: 10.1016/j.fuel.2012.01.021

Google Scholar

[17] Botas J A, Melero J A, Martinez F, Pariente M I. Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor. Catal Today 2010; 149: 334-340.

DOI: 10.1016/j.cattod.2009.06.014

Google Scholar

[18] Chen S, Shi Q, Xue Z, Sun X, Xiang W. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed. Int J Hydrogen Energ 2011; 36: 8915-8926.

DOI: 10.1016/j.ijhydene.2011.04.204

Google Scholar

[19] Ryden M, Lyngfelt A, Mattisson T. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)-Experiments in a continuously operating fluidized-bed reactor system. Int J Greenh Gas Con 2011; 5: 356-366.

DOI: 10.1016/j.ijggc.2010.08.004

Google Scholar

[20] Fang F, Li Z-s, Cai N-s, Tang X-y, Yang H-t. AFM investigation of solid product layers of MgSO4 generated on MgO surfaces for the reaction of MgO with SO2 and O2. Chem Eng Sci 2011; 66: 1142-1149.

DOI: 10.1016/j.ces.2010.12.014

Google Scholar

[21] Forero C R, Gayán P, García-Labiano F, de Diego L F, Abad A, Adánez J. High temperature behaviour of a CuO/γAl2O3 oxygen carrier for chemical-looping combustion. Int J Greenh Gas Con 2011; 5: 659-667.

DOI: 10.1016/j.ijggc.2011.03.005

Google Scholar

[22] Wang B, Yan R, Lee D H, Zheng Y, Zhao H, Zheng C. Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis. J Anal Appl Pyrol 2011; 91: 105-113.

DOI: 10.1016/j.jaap.2011.01.010

Google Scholar

[23] Wang B, Yan R, Zheng Y, Zhao H, Zheng C. Mechanistic investigation of chemical looping combustion of coal with Fe2O3 oxygen carrier. Fuel 2011; 90: 2359-2366.

DOI: 10.1016/j.fuel.2011.03.009

Google Scholar

[24] Li K, Wang H, Wei Y, Yan D. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides. Chem Eng J 2010; 156: 512-518.

DOI: 10.1016/j.cej.2009.04.038

Google Scholar

[25] Gayán P, Pans M A, Ortiz M, Abad A, de Diego L F, García-Labiano F, Adánez J. Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR–CLC system in a continuous CLC unit. Fuel Process Technol 2012; 96: 37-47.

DOI: 10.1016/j.fuproc.2011.12.008

Google Scholar

[26] Nalbandian L, Evdou A, Zaspalis V. La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming. Int J Hydrogen Energ 2011; 36: 6657-6670.

DOI: 10.1016/j.ijhydene.2011.02.146

Google Scholar

[27] Dong C, Sheng S, Qin W, Lu Q, Zhao Y, Wang X, Zhang J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system. Appl Surf Sci 2011; 257: 8647-8652.

DOI: 10.1016/j.apsusc.2011.05.042

Google Scholar

[28] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.

Google Scholar

[29] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.

Google Scholar

[30] F. Marabelli, G. B. Parraviciny, F. S. Drioli, Phys. Rev. B 52 (1995) 1433.

Google Scholar

[31] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38 (1988) 11322.

DOI: 10.1103/physrevb.38.11322

Google Scholar

[32] Li Y M, Tang L H, Li J H. Preparation and Electrochemical Performance for Methanol Oxidation of Pt/Graphene Nanocomposites. Electrochem. Commun. 2009, 11, 846–849.

DOI: 10.1016/j.elecom.2009.02.009

Google Scholar

[33] Dong C. Sheng S, Qin W, Lu Q, Zhao Y, Wang X, Zhang J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system. Appl Sur Sci 2011, 257: 8647-52.

DOI: 10.1016/j.apsusc.2011.05.042

Google Scholar