[1]
Hossain M, de Lasa H. Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem Eng Sci 2008; 63: 4433-4451.
DOI: 10.1016/j.ces.2008.05.028
Google Scholar
[2]
de Diego L F, Garcia-Labiano F, Adanez J, Gayan P, Abad A, Corbella B M, Palacios J M. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 2004; 83: 1749-1757.
DOI: 10.1016/j.fuel.2004.03.003
Google Scholar
[3]
Wolf J, Anheden M, Yan J. Comparison of nickel- and iron-based oxygen carriers in chemical looping combustion for CO capture in power generation. Fuel 2005; 84: 993-1006.
DOI: 10.1016/j.fuel.2004.12.016
Google Scholar
[4]
Johansson E, Mattisson T, Lyngfelt A, Thunman H. A 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel 2006; 85: 1428-1438.
DOI: 10.1016/j.fuel.2006.01.010
Google Scholar
[5]
Ryden M, Lyngfelt A, Mattisson T. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 2006; 85: 1631-1641.
DOI: 10.1016/j.fuel.2006.02.004
Google Scholar
[6]
Dahl I M, Bakken E, Larring Y, Spjelkavik A I, Håkonsen S F, Blom R. On the development of novel reactor concepts for chemical looping combustion. Energy Procedia 2009; 1: 1513-1519.
DOI: 10.1016/j.egypro.2009.01.198
Google Scholar
[7]
Dediego L, Garcialabiano F, Gayan P, Celaya J, Palacios J, Adanez J. Operation of a 10kWth chemical-looping combustor during 200h with a CuO–Al2O3 oxygen carrier. Fuel 2007; 86: 1036-1045.
DOI: 10.1016/j.fuel.2006.10.004
Google Scholar
[8]
Dueso C, García-Labiano F, Adánez J, de Diego L F, Gayán P, Abad A. Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel 2009; 88: 2357-2364.
DOI: 10.1016/j.fuel.2008.11.026
Google Scholar
[9]
Franca R V, Thursfield A, Metcalfe I S. La0.6Sr0.4Co0.2Fe0.8O3−δ microtubular membranes for hydrogen production from water splitting. J Membrane Sci 2012; 389: 173-181.
DOI: 10.1016/j.memsci.2011.10.027
Google Scholar
[10]
Echegoyen Y, Suelves I, Lázaro M J, Sanjuán M L, Moliner R. Thermo catalytic decomposition of methane over Ni–Mg and Ni–Cu–Mg catalysts. Applied Catalysis A: General 2007; 333: 229-237.
DOI: 10.1016/j.apcata.2007.09.012
Google Scholar
[11]
Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel 2009; 88: 683-690.
DOI: 10.1016/j.fuel.2008.09.016
Google Scholar
[12]
Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical – Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers – Oxygen release and reactivity with methane. Fuel 2011; 90: 941-950.
DOI: 10.1016/j.fuel.2010.11.044
Google Scholar
[13]
Bermúdez J M, Fidalgo B, Arenillas A, Menéndez J A. CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis. Fuel 2012; 94: 197-203.
DOI: 10.1016/j.fuel.2011.10.033
Google Scholar
[14]
Wang B, Zhao H, Zheng Y, Liu Z, Yan R, Zheng C. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers. Fuel Process Technol 2012; 96: 104-115.
DOI: 10.1016/j.fuproc.2011.12.030
Google Scholar
[15]
Gayán P, Adánez-Rubio I, Abad A, de Diego L F, García-Labiano F, Adánez J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel 2012; 16] Hossain M M, Sedor K E, de Lasa H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal-support interaction. Chem Eng Sci 2007; 62: 5464-5472.
DOI: 10.1016/j.fuel.2012.01.021
Google Scholar
[17]
Botas J A, Melero J A, Martinez F, Pariente M I. Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor. Catal Today 2010; 149: 334-340.
DOI: 10.1016/j.cattod.2009.06.014
Google Scholar
[18]
Chen S, Shi Q, Xue Z, Sun X, Xiang W. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed. Int J Hydrogen Energ 2011; 36: 8915-8926.
DOI: 10.1016/j.ijhydene.2011.04.204
Google Scholar
[19]
Ryden M, Lyngfelt A, Mattisson T. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)-Experiments in a continuously operating fluidized-bed reactor system. Int J Greenh Gas Con 2011; 5: 356-366.
DOI: 10.1016/j.ijggc.2010.08.004
Google Scholar
[20]
Fang F, Li Z-s, Cai N-s, Tang X-y, Yang H-t. AFM investigation of solid product layers of MgSO4 generated on MgO surfaces for the reaction of MgO with SO2 and O2. Chem Eng Sci 2011; 66: 1142-1149.
DOI: 10.1016/j.ces.2010.12.014
Google Scholar
[21]
Forero C R, Gayán P, García-Labiano F, de Diego L F, Abad A, Adánez J. High temperature behaviour of a CuO/γAl2O3 oxygen carrier for chemical-looping combustion. Int J Greenh Gas Con 2011; 5: 659-667.
DOI: 10.1016/j.ijggc.2011.03.005
Google Scholar
[22]
Wang B, Yan R, Lee D H, Zheng Y, Zhao H, Zheng C. Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis. J Anal Appl Pyrol 2011; 91: 105-113.
DOI: 10.1016/j.jaap.2011.01.010
Google Scholar
[23]
Wang B, Yan R, Zheng Y, Zhao H, Zheng C. Mechanistic investigation of chemical looping combustion of coal with Fe2O3 oxygen carrier. Fuel 2011; 90: 2359-2366.
DOI: 10.1016/j.fuel.2011.03.009
Google Scholar
[24]
Li K, Wang H, Wei Y, Yan D. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides. Chem Eng J 2010; 156: 512-518.
DOI: 10.1016/j.cej.2009.04.038
Google Scholar
[25]
Gayán P, Pans M A, Ortiz M, Abad A, de Diego L F, García-Labiano F, Adánez J. Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR–CLC system in a continuous CLC unit. Fuel Process Technol 2012; 96: 37-47.
DOI: 10.1016/j.fuproc.2011.12.008
Google Scholar
[26]
Nalbandian L, Evdou A, Zaspalis V. La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming. Int J Hydrogen Energ 2011; 36: 6657-6670.
DOI: 10.1016/j.ijhydene.2011.02.146
Google Scholar
[27]
Dong C, Sheng S, Qin W, Lu Q, Zhao Y, Wang X, Zhang J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system. Appl Surf Sci 2011; 257: 8647-8652.
DOI: 10.1016/j.apsusc.2011.05.042
Google Scholar
[28]
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
Google Scholar
[29]
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.
Google Scholar
[30]
F. Marabelli, G. B. Parraviciny, F. S. Drioli, Phys. Rev. B 52 (1995) 1433.
Google Scholar
[31]
J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38 (1988) 11322.
DOI: 10.1103/physrevb.38.11322
Google Scholar
[32]
Li Y M, Tang L H, Li J H. Preparation and Electrochemical Performance for Methanol Oxidation of Pt/Graphene Nanocomposites. Electrochem. Commun. 2009, 11, 846–849.
DOI: 10.1016/j.elecom.2009.02.009
Google Scholar
[33]
Dong C. Sheng S, Qin W, Lu Q, Zhao Y, Wang X, Zhang J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system. Appl Sur Sci 2011, 257: 8647-52.
DOI: 10.1016/j.apsusc.2011.05.042
Google Scholar