Laboratory Study of the Removal Efficiencies for Ammonium and Total Phosphorus from Runoff Using Layered Filtration Systems

Article Preview

Abstract:

The removal efficiencies for ammonium (NH4+) and total phosphorus (TP) from runoff using two layered filtration systems (LFS-A, with a turf surface, and LFS-B, with a permeable brick surface) were investigated in six repeated experiments. The results indicated that the removal efficiencies for NH4+ and TP from infiltrated water using LFS-A were as high as 90.92 and 91.60%, respectively, while the efficiencies resulting from LFS-B ranged from 86.67 to nearly 100% and 90.29 to 99.09%, respectively. However, there was a significant difference in the comprehensive removal rates (CRRs) for NH4+ and TP between LFS-A (400 and 70 mg·m-2·h-1, respectively) and LFS-B (174 and 54 mg·m-2·h-1, respectively). Some engineering measures, such as the utilization of replanted turf, may reduce the CRRs for pollutants for long periods of time; while no significant relationships between the CRRs of NH4+ and TP and their initial concentrations were observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2198-2205

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M. Addiscott, D. Brockie, J.A. Catt, D.G. Christian, G.L. Harris, K.R. Howse, N.A. Mirza and T.J. Pepper: J. Environ. Qual. Vol. 29(2000), pp.522-532

DOI: 10.2134/jeq2000.00472425002900020021x

Google Scholar

[2] A.B. Deletic and C.T. Maksimovic: J. Environ. Eng. Vol. 124(1998), pp.869-879

Google Scholar

[3] C.J. DiBlasi, H. Li, A.P. Davis and U. Ghosh: Environ. Sci. Technol. Vol. 43(2008), pp.494-502

Google Scholar

[4] US EPA: Results of the national urban runoff program. Washington DC. (1983)

Google Scholar

[5] M.J. Paul and J.L. Meyer: Annu. Rev. Ecol. Syst. Vol. 32(2001), pp.333-365

Google Scholar

[6] K. Mizuta, T. Matsumoto, Y. Hatate, K. Nishihara and T. Nakanishi: Bioresource Technol. Vol. 95(2004), pp.255-257

Google Scholar

[7] S.D. Alexandratos: J. Hazard. Mater. Vol. 139(2007), pp.467-470

Google Scholar

[8] R. McVeigh and L. Weatherley: Water Sci. Technol. Vol. 40(1999), pp.143-149

Google Scholar

[9] S. De Aguiar and T.A. Kurniawan: J. Hazard. Mater. Vol. 97(2003), pp.219-243

Google Scholar

[10] M. Sarioglu: Sep. Purif. Technol. Vol. 41(2005), pp.1-11

Google Scholar

[11] Z. Ganrot, G. Dave and E. Nilsson: Bioresource Technol. Vol. 98(2007), pp.3112-3121

Google Scholar

[12] A. Dyer: An introduction to zeolite molecular sieves (John Wiley and Sons Inc., USA 1988)

Google Scholar

[13] W.S. Chang, S.W. Hong and J. Park: Process Biochem. Vol. 37(2002), pp.693-698

Google Scholar

[14] H.B. Li, J. Li, C.T. Hou, S. Du, Y.Y. Ren, Z.J. Yang, Q. Xu and X.Y. Hu: Talanta. Vol. 83(2010), pp.591-595

Google Scholar

[15] D. Zhou, Z.L. Chen, C.J. Bi, J. Wang, S.M. Lin and Y.Y. Qi: J. East China Normal University (Natural Science), Vol. 1(2011), pp.185-193(in Chinese)

Google Scholar

[16] S. Le Coustumer and S. Barraud: Water Sci. Technol. Vol. 55(2007), pp.235-243

Google Scholar

[17] G. Kim, J. Yur, J. Kim: J. Environ. Manag. Vol. 85(2007), pp.9-16

Google Scholar

[18] C.H. Hsieh, A.P. Davis and B.A. Needdlman: Water Environ. Res. Vol. 79(2007), pp.177-184

Google Scholar

[19] L.Z. Hou, S.Y. Feng, Y.Y. Ding, S.H. Zhang and J.H. Tian: Acta Scientiae Circumstantiae, Vol. 29(2009), pp.960-967(in Chinese)

Google Scholar

[20] C.H. Hsieh and A.P. Davis: J. Environ. Eng. Vol. 131(2005), pp.1521-1531

Google Scholar

[21] E.W. Shin, J.S. Han, M. Jang, S.H. Min, J.K. Park and R.M. Rowell: Environ. Sci. Technol. Vol. 38(2004), pp.912-917

Google Scholar

[22] A.P. Davis, M. Shokouhian, H. Sharma and C. Minami: Water Environ. Res. Vol. 73(2001), pp.5-14

Google Scholar