Promotion of Cerium Oxide as Additive over MnOx/PG SCR Catalysts for Low Temperature Flue Gas NO Removal

Article Preview

Abstract:

Manganese oxides supported palygorskite (MnOx/PG) catalysts used for low-temperature selective catalytic reduction of NO with NH3 was modified by doping cerium oxide as additive for enhancement of its performance. The effects of doped cerium content on catalysts' activity were investigated. It was found that the NO removal efficiency of Mn8Ce5/PG catalyst was remarkably higher than Mn8/PG catalyst especially at low temperatures, revealing that the addition of cerium oxide effectively enhanced the catalysts' SCR activity. Catalysts were characterized by BET, XRD, XPS to explore the relation between structural properties and increasing in SCR activity via modification. Results showed that the doping of cerium oxide has improved the dispersion of manganese oxides as active species. And furthermore, the stability of surface MnO2 was also improved which was suggested to be the main reason for the enhancement of catalysts' activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2264-2269

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee and B. Bandl-Konrad: Catal. Today. Vol. 114 (2006), pp.3-12

Google Scholar

[2] P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand and P. G. Smirniotis: Appl. Catal. B. Vol. 76 (2007), pp.123-134

DOI: 10.1016/j.apcatb.2007.05.010

Google Scholar

[3] Z. G. Huang, Z. P. Zhu and Q. Y. Liu: J. Catal. Vol. 214 (2003), pp.213-219

Google Scholar

[4] M. Wallin, S. Forser, P. Thormahlen and M. Skoglundh: Ind. Eng. Chem. Res. Vol. 43 (2004) , pp.7723-7731

Google Scholar

[5] R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang and T. T. Gu: Catal. Today. Vol. 153 (2010), pp.84-89

Google Scholar

[6] S. M. Lee, K. H. Park and S. C. Hong: Chem. Eng. J. Vol. 195-196 (2012), pp.323-332

Google Scholar

[7] R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang and T. T. Gu: Chemosphere. Vol. 78 (2010), pp.1160-1166

Google Scholar

[8] F. Kapteijn, L. Singoredjo and A Andreini: Appl. Catal. B. Vol. 3 (1994), pp.173-189

Google Scholar

[9] E. R. Stobbe, B. A. De Boer and J. W. Geus: Catal. Today. Vol. 47 (1999), pp.161-167

Google Scholar

[10] X. L. Zhang, W. P. Jiang, X. P. Wu and B. W. Shi: CIESC. J. Vol. 63 (2012), pp.916-923 (In Chinese)

Google Scholar

[11] W. Xu, Y. Yu, C. Zhang and H. He: Catal. Commun. Vol. 9 (2008), pp.1453-1457

Google Scholar

[12] B. Guan, H. Lin, L. Zhu and Z. Huang: J. Chem. Phys. C. Vol. 115 (2011), pp.12850-12863

Google Scholar

[13] G. S. Qi, R. T. Yang and R. Chang: Appl. Catal. B. Vol. 51 (2004), pp.93-106

Google Scholar

[14] Z. B. Wu, B. Q. Jiang, Y. Liu, W. R. Zhao and B. H. Guan: J. Hazard. Mater. Vol. 145 (2007), pp.488-494

Google Scholar

[15] G. S. Qi and R. T. Yang: Appl. Catal. B. Vol. 44 (2003), pp.217-225

Google Scholar

[16] D. Y. Jiang: Preparation and performances of MnOx-CeO2 composite oxide nanospheres via supercritical antisolvent process. Ph. D. Tianjin University. 2011. (In Chinese)

Google Scholar

[17] G. S. Qi and R. T. Yang: J. Phys. Chem. B. Vol. 108 (2004), pp.15738-15747

Google Scholar

[18] M. Machida, M. Uto, D. Kurogi and T. Kijima: Chem. Mater. Vol. 12 (2000), pp.3158-3164

Google Scholar

[19] X. F. Tang, Y. G. Li, X. M. Huang and Y. D. Xu: Appl. Catal. B. Vol. 62 (2006), pp.265-273

Google Scholar

[20] D. A. Peña, B. S. Uphade and P. G. Smirniotis: J. Catal. Vol. 221 (2004), pp.421-431

Google Scholar

[21] Z. Y. Ding, L. X. Li, D. Wade and E. F. Gloyna: Ind. Eng. Chem. Res. Vol. 37 (1998), pp.1707-1716

Google Scholar

[22] M. Romeo, K. Bak, J. El Fallah and F. Le Normand: Surf. Interface. Anal. Vol. 20 (1993), P. 508-512

Google Scholar

[23] M. Kang, E. D. Park, J. M. Kim and J. E. Yie: Appl. Catal. A. Vol. 327 (2007), pp.261-269

Google Scholar