Lower Heating Value Estimation of Coal Gangue through Proximate Analysis Data Based on GB/T 212-2008

Article Preview

Abstract:

The calorific value of coal gangue is an important indicator to assess its quality for comprehensive utilizations. Although the heating values can be measured experimentally with a Bomb calorimeter, an easier and faster approach within an acceptable tolerance is in great demand. Herein, we use an alternative approach to estimate the heating value based on proximate analysis data, which are measured under the instruction of GB/T 212-2008. The lower heating values of coal gangue samples we collected range from 2307 to 8309 kJ/kg, which are key information for the use of coal gangue in principle. We conclude that the sample with calorific value of 8309 kJ/kg can be used as formal fossil fuel; another sample of 5799 kJ/kg can be used for thermal power generation, while the other four are not worth for fuel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2699-2703

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. Wang, X. E. Ma and Y. S. Zhang: Fly Ash Comprehensive Utilization, Vol. 2 (2011), pp.37-43. In Chinese

Google Scholar

[2] Z. D. Li and Q. L. Zhou: Engineering Science, Vol. 6 (2004), pp.20-22. In Chinese

Google Scholar

[3] Y. Z. Sun, J. S. Fan, P. Qin and H. Y. Niu: Environ Geochem Health, Vol. 31 (2009), p.81–89

Google Scholar

[4] C. Li, J. Wan, H. Sun and L. Li: Journal of Hazardous Materials, Vol. 179 (2010), pp.515-520

Google Scholar

[5] D.X. Li, X.Y. Song, C.C. Gong and Z.H. Pan: Cement and Concrete Research, Vol. 36 (2006), p.1752– 1759

Google Scholar

[6] S. U. Patel, B. J. Kumar, Y. P. Badhe, B.K. Sharma, S. Saha, S. Biswas, A. Chaudhury, S. S. Tambe, B. D. Kulkarni: Fuel, Vol 86, (2007), pp.334-44

DOI: 10.1016/j.fuel.2006.07.036

Google Scholar

[7] J. Parikh, S.A. Channiwala, G.K. Ghosal: Fuel, Vol. 84 (2005), pp.484-494

Google Scholar

[8] P. Fernandez, R.M. Diaz, J. Xiberta: Fuel, Vol. 76 (1997), pp.431-434

Google Scholar

[9] S. Kucukbayrak, B. Durus, A.E. Mericboyu, E. Kadioglu: Fuel, Vol. 70 (1991), pp.979-981

Google Scholar

[10] S.A. Channiwala, P.P. Parikh: Fuel, Vol. 81 (2002), pp.1051-1063

Google Scholar

[11] A. Demirbas, K. Dincer: Energy Sources,Part A: Recovery, Utilization, and Environmental Effects, Vol. 30 (2008), pp.969-974

DOI: 10.1080/15567030601082811

Google Scholar

[12] A. V. Akkaya: Fuel Processing Technology, Vol. 90 (2009), pp.165-170

Google Scholar

[13] A.K. Majumder, R. Jain, P. Banerjee, J.P. Barnwal: Fuel, Vol. 87 (2008), pp.3077-3081

Google Scholar

[14] C.S. Zhang: The new technologies of comprehensive utilization of coal gangue, Chemical Industry Press, Beijing, 2008. In Chinese

Google Scholar