[1]
Z. N. Yang, X. R. Liu, Q. Z. Zeng, et al. Hydrology in Chinese cold region. Beijing: Science Press (2000). (In Chinese)
Google Scholar
[2]
D. H. Qin, C. D. Xiao, Y. J. Ding, et al. Progress on cryospheric studies by international and Chinese communities and perspectives: Quarterly Journal of Applied Meteorology, Vol. 17, 6 (2006), pp.649-656. (In Chinese)
Google Scholar
[3]
L. Q. Mou. Study on thermodynamic watershed hydrological model for cold regions. Beijing: Tsinghua University (2008). (In Chinese)
Google Scholar
[4]
E. Shamir, K. P. Georgakakos. Distributed snow accumulation and ablation modeling in the American River basin: Advances in Water Resources. Vol. 19 (2006), pp.558-570
DOI: 10.1016/j.advwatres.2005.06.010
Google Scholar
[5]
P. Singh, V. P. Singh. Snow and glacier hydrology. The Netherlands: Kluwer Academic Publishers (2001).
Google Scholar
[6]
de Quervain M R. Snow structure, heat and mass flux through snow. in: Proceedings on the Symposia on the Role of Snow and Ice in Hydrology, Banff (1972).
Google Scholar
[7]
M. T. Walter, E. S. Brooks, D. K. McCool, et al. Process-based snowmelt modeling: does it require more input data than temperature-index modeling? Journal of Hydrology, Vol. 300 (2005), pp.65-75.
DOI: 10.1016/j.jhydrol.2004.05.002
Google Scholar
[8]
X. G. Li, M. W. Williams. Snowmelt runoff modeling in an arid mountain watershed, Tarim Basin, China: Hydrological Processes. Vol. 22, 19 (2008), pp.3931-3940.
DOI: 10.1002/hyp.7098
Google Scholar
[9]
T. A. Fontaine, T. S. Cruickshank, J. G. Arnold, et al. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT): Journal of Hydrology, Vol. 262 (2002), pp.209-223.
DOI: 10.1016/s0022-1694(02)00029-x
Google Scholar
[10]
B. Ambroise, J. Freer, K. J. Beven. Application of a generalized TOPMODEL to the small Ringelbach catchment, Vosges, France: Water Resources Research. Vol. 32(1996), pp.2147-2159.
DOI: 10.1029/95wr03715
Google Scholar
[11]
X. Y. Yu, X. R. Liu. Distributed hydrological model for watersheds supplemented with melted snow and glacier water and rainfall: Journal of Hohai University (Natural Sciences), Vol. 30, 5 (2002), pp.23-27. (In Chinese)
Google Scholar
[12]
V. P. Singh. Computer Model of Watershed Hydrology. USA: Water Resource Publications (1995).
Google Scholar
[13]
F. L. Yan, J. Ramage, R. McKenney. Modeling of high-latitude spring freshet from AMSR-E passive microwave observations: Water Resources Research, Vol. 45 (2009), W11408
DOI: 10.1029/2008WR007370
Google Scholar
[14]
J. Kondo, T. Yamazaki. A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method: Journal of Applied Meteorology, Vol. 29 (1990), pp.375-384.
DOI: 10.1175/1520-0450(1990)029<0375:apmfss>2.0.co;2
Google Scholar
[15]
Hood E, Williams M, Cline D. Sublimation from seasonal snowpack at a continental mid-latitude alpine site. Hydrological Processes, 1999, 13: 1781-1797.
DOI: 10.1002/(sici)1099-1085(199909)13:12/13<1781::aid-hyp860>3.0.co;2-c
Google Scholar
[16]
P. Bartelt, M. Lehning. A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model: Cold Region Science and Technology, Vol. 35 (2002), pp.123-145.
DOI: 10.1016/s0165-232x(02)00074-5
Google Scholar
[17]
Rachel Jordan. A One-Dimensional temperature model for a snow cover –Technical documentation for SNTHERM.89[C], U.S. Army Corps of Engineers Cold Regions Research & Engineering Laboratory Special Report 91-16, 1991. 10.
Google Scholar
[18]
Donald W. Cline. Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site. Water Resources Research, 1997, 33(4): 689-701.
DOI: 10.1029/97wr00026
Google Scholar