Nitrogen and Phosphorus Related Hydrolytic Enzyme Activities Influenced by N Deposition under Semi-Arid Grassland Soil

Article Preview

Abstract:

Eight enzyme activities involved in N and P cycling and soil basic properties influenced by four years of nitrogen (N) deposition were investigated under a semi-arid grassland soil, Northern China. Results showed that N addition into soil could cause soil acidification significantly. Inorganic dissolved N (NH4+N and NO3N) concentration increased significantly while Olsen-P concentration changed slowly with simulating N deposition. Soil nitrification potential, protease, nitrate reductase, and phosphodiesterase activities were repressed by higher rate of N deposition caused by higher NH4+ concentration or soil acidification. Soil alkaline phosphomonoesterase activities correlated positively with soil pyrophosphatase activities due to the microbial origin of alkaline phosphatase and pyrophosphate. Positive correlation of acid phosphomonoesterase activities and soil TC was also observed in the study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

3847-3854

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Vitousek, S. Porder, B. Houlton and O. Chadwick: Ecol. Appl. Vol. 20 (2010), p.5.

Google Scholar

[2] J.N. Galloway, F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C. Cleveland, P. Green and E. Holland: Biogeochemistry Vol. 70 (2004), p.153.

DOI: 10.1007/s10533-004-0370-0

Google Scholar

[3] B.L. Turner, R. Baxter and B.A. Whitton: Environ. Pollut., Vol. 120 (2002), p.313.

Google Scholar

[4] D. Johnson, J.R. Leake and J.A. Lee: New Phytol. Vol. 141 (1999), p.433.

Google Scholar

[5] L. Van der Eerden, T.A. Dueck, J. Berdowski, H. Greven and H. Van Dobben: Acta Bot. Neerl Vol. 40 (1991), p.281.

DOI: 10.1111/j.1438-8677.1991.tb01559.x

Google Scholar

[6] R. Bobbink, M. Hornung and J.G. Roelofs: J. Ecol. Vol. 86 (2003), p.717.

Google Scholar

[7] U. Falkengren-Grerup, J. Brunet and M. Diekmann: Environ. Pollut. Vol. 102(1998), p.415.

Google Scholar

[8] M. Tabatabai, in: Soil enzymes, edited by S. Angel, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, volume 5 of Methods of soil analysis, chapter, 37, Soil Science Society of America (1994).

DOI: 10.2136/sssabookser5.2

Google Scholar

[9] S. Criquet and A. Braud: Soil Till. Res. Vol. 98 (2008), p.164.

Google Scholar

[10] N. Juma and M. Tabatabai: Soil Science Vol. 126 (1978), p.101.

Google Scholar

[11] N. Juma and M. Tabatabai: Soil Biol. Biochem. Vol. 20 (1988), p.533.

Google Scholar

[12] R. Blanchar: Soil Sci. Soc. Am. J. Vol. 33 (1969), p.622.

Google Scholar

[13] A. Fortuna, R. Harwood, G. Robertson, J. Fisk and E. Paul: Agr. Ecosys. Environ. 97(2003), p.285.

Google Scholar

[14] M.H. Chantigny, D. Prévost, D.A. Angers, L.P. Vézina and F.P. Chalifour: Biol. Fert. Soils Vol. 21 (1996), p.239.

Google Scholar

[15] M.H. Fu and M.A. Tabatabai: Soil Biol. Biochem. Vol. 21 (1989), p.943.

Google Scholar

[16] J. Ladd and J. Butler: Soil Biol. Biochem. Vol. 4 (1972), p.19.

Google Scholar

[17] D. Geisseler and W.R. Horwath: Soil Biol. Biochem. Vol. 40 (2008), p.3040.

Google Scholar

[18] S. Olsen, C. Cole, F. Watanabe and L. Dean: USDA circular Vol. 939 (1954), p.1.

Google Scholar

[19] S. Kuo, in: Phosphorus, edited by D. Sparks, A. Page, P. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner, volume 5 of Methods of Soil Analysis: Part 3, Chemical Methods, chapter, 32, Soil Science Society of America Inc. (1996).

DOI: 10.2136/sssabookser5.3

Google Scholar

[20] J. Murphy and J.P. Riley: Anal. Chim. Acta Vol. 27 (1962), p.31.

Google Scholar

[21] E. Kandeler, in: Methods in soil biology, Edited by F. Schinner, E. Kandeler, R. Ohlinger and R. Margesin, volume 1 of Methods in soil microbiology Springer, chapter, 10, Springer (1996).

DOI: 10.1007/978-3-642-60966-4

Google Scholar

[22] J. Guo, X. Liu, Y. Zhang, J. Shen, W. Han, W. Zhang, P. Christie, K. Goulding, P. Vitousek and F. Zhang: Science Vol. 327 (2010), p.1008.

DOI: 10.1126/science.1182570

Google Scholar

[23] S. Malhi, M. Nyborg, T. Goddard and D. Puurveen: Nutr. Cyc. Agroecosys. Vol. 90 (2011), p.133.

Google Scholar

[24] M. Nyborg, S. Malhi, E. Solberg and R. Izaurralde: Can. J. Soil Sci. 79 (1999), p.317.

Google Scholar

[25] L.K. Tiemann and S.A. Billings, Ecosystems Vol. 14 (2011) p.234.

Google Scholar

[26] V. Poirier, D. Angers, P. Rochette, M. Chantigny, N. Ziadi, G. Tremblay and J. Fortin, Soil Sci. Soc. Am. J. Vol. 73 (2009), p.255.

DOI: 10.2136/sssaj2008.0006

Google Scholar

[27] S.M. Yang, S.S. Malhi, F.M. Li, D.R. Suo, M.G. Xu, P. Wang, G.J. Xiao, Y. Jia, T.W. Guo and J.G. Wang: J. Plant Nutr. Soil Sci. Vol. 170 (2007), p.234.

Google Scholar

[28] D. Johnson, J.R. Leake, J.A. Lee and C.D. Campbell: Environ. Pollut. Vol. 103 (1998), p.239.

Google Scholar

[29] J. Xia, S. Niu and S. Wan: Glob. Change Biol. Vol. 15 (2009), p.1544.

Google Scholar

[30] G. Sujetovienė: Environ. Res., Eng. Manage. Vol. 53 (2010), p.13.

Google Scholar

[31] G.W. McCarty and J.M. Bremner: P. Nat. Acad. Sci. Vol. 89 (1992), p.5834.

Google Scholar

[32] E. Kandeler and H. Gerber: Bio. Fert. Soils Vol. 6 (1988), p.68.

Google Scholar

[33] M. Browman and M. Tabatabai: Soil Sci. Soc. Am. J. Vol. 42 (1978), p.284.

Google Scholar

[34] C. Ghonsikar and R. Miller: Plant Soil, Vol. 38 (1973), p.651.

Google Scholar