[1]
Bodelierple, Fenzel P. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination [J]. Applied and Environmental Microbiology, Vol. 65, 1999, pp.1826-1833
DOI: 10.1128/aem.65.5.1826-1833.1999
Google Scholar
[2]
Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization [J]. Applied and Environmental Microbiology, Vol. 71, 2005, pp.8335-8343.
DOI: 10.1128/aem.71.12.8335-8343.2005
Google Scholar
[3]
Henckel T, Friedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase [J]. Applied and Environmental Microbiology, Vol. 65, 1999, pp.1980-1990.
DOI: 10.1128/aem.65.5.1980-1990.1999
Google Scholar
[4]
Rich J J, Myrold D D. Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA [J]. Soil Biology and Biochemistry, Vol.36, 2004, pp.1431-1441.
DOI: 10.1016/j.soilbio.2004.03.008
Google Scholar
[5]
Jaatinen K, Knief C, Dunfield P F, et al. Methanotrophic bacteria in boreal forest soil after fire [J]. FEMS Microbiology Ecology, Vol. 50, 2004, pp.195-202.
DOI: 10.1016/j.femsec.2004.06.013
Google Scholar
[6]
Ruiz-Rueda O, Hallin S, Bañeras L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland [J]. FEMS Microbiology Ecology, Vol.67, 2009, pp.308-319.
DOI: 10.1111/j.1574-6941.2008.00615.x
Google Scholar
[7]
Jaatinen K, Tuittila E S, Laine J, et al. Methane-oxidizing bacteria in a finnish raised mire complex: Effects of site fertility and drainage [J]. Microbial Ecology, Vol. 50, 2005, pp.429-439.
DOI: 10.1007/s00248-005-9219-x
Google Scholar
[8]
Osborn A M, Moore E, Timmis K N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environmental Microbiology, Vol. 2, 2000, pp.39-50.
DOI: 10.1046/j.1462-2920.2000.00081.x
Google Scholar
[9]
Jaatinen, Krista, et al. Methanotrophic bacteria in boreal forest soil after fire.FEMS microbiology ecology [J]. Vol. 50, 2006, pp.195-202.
DOI: 10.1016/j.femsec.2004.06.013
Google Scholar
[10]
Ruiz-Rueda O, Hallin S, Bañeras L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland [J]. FEMS Microbiology Ecology, Vol. 67, 2009, pp.308-319.
DOI: 10.1111/j.1574-6941.2008.00615.x
Google Scholar
[11]
Jaatinen K, Tuittila E S, Laine J, et al. Methane-oxidizing bacteria in a finnish raised mire complex: Effects of site fertility and drainage [J]. Microbial Ecology, Vol.50, 2005, pp.429-439.
DOI: 10.1007/s00248-005-9219-x
Google Scholar
[12]
Zhiping Wang, Chunsheng Hu, Jurong Yang. Effect of inorganic nitrogen on CH4 oxidation in soils [J]. Chinese Journal of Applied Ecology[J]. Vol. 14, 2003, pp.305-309.
Google Scholar
[13]
Dunfield P F, Knowles R. Kinetics of methane oxidation by nitrate, and ammonium in a humisol [J]. Applied and Environmental Microbiology, Vol, 61, 1995, pp.3129-3135.
DOI: 10.1128/aem.61.8.3129-3135.1995
Google Scholar
[14]
Gulledge J, Doyle A P, Schimel J P. Different NH4+-inhibition patterns of soil methane consumption: A result of distinct methane-oxidizer populations across sites? [J]. Soil Biology and Biochemistry, Vol. 29, 1997, pp.13-21.
DOI: 10.1016/s0038-0717(96)00265-9
Google Scholar
[15]
Topp E, Pattey E. Soils as sources and sinks for atmospheric methane [J]. Canadian Journal of Soil Science, Vol, 77, 1997, pp.167-178.
DOI: 10.4141/s96-107
Google Scholar
[16]
Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source [J]. Water Research, Vol. 41, 2007, pp.2726-2738.
DOI: 10.1016/j.watres.2007.02.053
Google Scholar