[1]
A. Osvald: Fire Characteristics of Wood and Wood Products (Technical University inZvolen, Slovak Republic, 1997)
Google Scholar
[2]
A. Osvald and L. Osvaldová: Retardation of Spruce Wood Burning (Technical University in Zvolen, Slovak Republic, 2003)
Google Scholar
[3]
A. Majlingová, A. Osvald and L. OsvaldováComparison of Carbonized Layer Thickness and Weightless of Spruce and Larig. In Teplo – oheň – materiály (Technical University in Zvolen, Slovak Republic, 2007)
Google Scholar
[4]
J. Martinka, D. Kačíková, E. Hroncová and J. Ladoemrský: Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J Therm Anal Calorim. Vol. 110 (2012) pp.193-198
DOI: 10.1007/s10973-012-2261-2
Google Scholar
[5]
J. Martinka, K. Balog, T. Chrebet, E. Hroncová and J. Dibdiaková: Effect of oxygen concentration and temperature on ignition time of polypropylene. J Therm AnalCalorim. Vol. 110 (2012) pp.485-487
DOI: 10.1007/s10973-012-2546-5
Google Scholar
[6]
M. Zachar: Influence of Temperature on Thermal Degradation of Selected Kind of Wood(Technical University in Zvolen, Slovak Republic, 2009).
Google Scholar
[7]
T. Chrebet, J. Martinka, K. Balog and I. Hrušovský: Moment of Lignocellulosic Materials Ignition Defined by Critical Mass Flow Rate. ApplMech Mater. Vol. 291-294 (2013) pp.1985-1988
DOI: 10.4028/www.scientific.net/amm.291-294.1985
Google Scholar
[8]
Y. Hu, S. Natio, N. Kobayashi and M. Hasatani:CO2,NOx and SO2 emissions from the combustion of coal with high oxygen concentrations gases. Fuel.Vol. 79 (2000) pp.1925-1932.
DOI: 10.1016/s0016-2361(00)00047-8
Google Scholar
[9]
J. Ladomerský: Emission analysis and minimization from the wood waste combustion. Wood Res. Vol. 45 (2000) pp.33-44
Google Scholar
[10]
P. Bober, A. Oriňák, R. Oriňáková, P. Zamostný, J. Ladomerský,A. Fedorková:Hydrogen production by catalysed pyrolysis of polymer blends.Fuel.Vol 90 (2011) pp.2334-2339
DOI: 10.1016/j.fuel.2011.02.001
Google Scholar
[11]
J. Gong, X. Zhou, Z. Deng and L. Yang:Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes.IntJ Heat Mass Transf. Vol. 61 (2013) pp.191-200
DOI: 10.1016/j.ijheatmasstransfer.2013.01.066
Google Scholar
[12]
J. Fang, R. Tu, J. Guan, J. Wang and Y. Zhang: Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel. Vol. 90 (2011) pp.2760-2766
DOI: 10.1016/j.fuel.2011.03.035
Google Scholar
[13]
V. Babrauskas and R.D. Peacock: Heat Release Rate:The Single Most Important Variable in Fire Hazard. Fire Saf J. Vol. 18 (1992) pp.255-272
DOI: 10.1016/0379-7112(92)90019-9
Google Scholar
[14]
A.H. Hansen and P.J. Hovde: Prediction of time to flashoverin the ISO 9705 room corner test based on cone calorimeter test results.Fire Mater. Vol. 26 (2002) pp.77-86
DOI: 10.1002/fam.788
Google Scholar
[15]
Q. Xu, A. Majlingova, M. Zachar, C. Jin and Y. Jiang: Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers.J Therm Anal Calorim. Vol. 110 (2012) pp.65-70
DOI: 10.1007/s10973-011-2059-7
Google Scholar
[16]
B. Ostman, L.D and Tsantaridis: Correlation between cone calorimeter data and time to flashover in the room fire test. Fire Mater. Vol. 18 (1994) pp.205-209
DOI: 10.1002/fam.810180403
Google Scholar
[17]
M. Zachar, I. Mitterová, Q. Xu, A. Majlingová, J. Cong and Š. Galla: Determination of fire and burning properties of spruce wood. Drv Ind. Vol. 63 (2012) pp.217-223
DOI: 10.5552/drind.2012.1141
Google Scholar
[18]
K. Balog: Auto-ignition (Association of fire and safety engineering, Czech Republic, 1999)
Google Scholar
[19]
A. Osvald and V. Mózer: Fire engineering - a method for design fire safety. Advances in Fire and Safety Engineering (Technical University n Zvolen, Slovak Republic, 2012)
Google Scholar