The Biocontrol Mechanism of Trichoderma asperellum Resistance Plant Pathogenic Fungi

Article Preview

Abstract:

T. asperellum is an important biocontrol fungus owing to their ability to antagonize plant pathogenic fungi. The biocontrol effects of T. asperellum were played by secreting many kinds of hydrolytic enzymes and antibiotics. T. asperellum producing more cell wall degrading enzymes when meeting plant pathogens. Moreover, the growth of the plant pathogens was inhibited by T. asperellum secondary metabolites. The yield of antibiotic 6-PP was 1.32 mg 6-PP/g mycelial dry weight. T. asperellum control plant pathogens through secreting cell wall degrading enzymes and producing antifungal metabolites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

4525-4528

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.T. Adekunle, T. Ikotun, D.A. Florini and K.F. Cardwell: African Journal of Biotechnology, Vol. 5 (2006) No.5, p.419.

Google Scholar

[2] K. Nagayama, S. Watanabe, K. Kumakura, T. Ichikawa and T. Makino: Journal of Pesticide Science, Vol. 32 (2007) No.2, p.164.

Google Scholar

[3] J.A. Lewis and R.D. Lumsden: Crop Protection, Vol. 20 (2001) No.1, p.49.

Google Scholar

[4] N. Rabeendran, E.E. Jones, D.J. Moot and A. Stewart: Biological Control, Vol. 39 (2006) No.3, p.352.

Google Scholar

[5] H. Olson and D.M. Benson: Biological Control, Vol. 42 (2007) No.2, p.233.

Google Scholar

[6] C. Calvet, J. Pera and J.M. Barea: Plant and Soil, Vol. 148 (1993) No.1, p.1.

Google Scholar

[7] C.J. Wijesinghe, R.S. Wijeratnam, J. Samarasekara and R.C. Wijesundera: Biological Control, Vol. 53 (2010) No.3, p.285.

DOI: 10.1016/j.biocontrol.2010.02.009

Google Scholar

[8] S.N. Tchameni, M. Ngonkeu, B. Begoude, L.W. Nana, R. Fokom, A.D. Owona, J.B. Mbarga, T. Tchana, P.R. Tondje, F.X. Etoa and J. Kuaté: Crop Protection, Vol. 30 (2011) No.10, p.1321.

DOI: 10.1016/j.cropro.2011.05.003

Google Scholar

[9] J.B. Mbarga, G.T. Hoopen, J. Kuaté, A. Adiobo, M.L. Ngonkeu, Z. Ambang, A. Akoa, P.R. Tondje and B.D. Begoude: Crop Protection, Vol. 36 (2012) , p.18.

DOI: 10.1016/j.cropro.2012.02.004

Google Scholar

[10] O. Ramot, A. Viterbo, D. Friesem, A. Oppenheim and I. Chet: Current Genetics, Vol. 45 (2004) No.4, p.205.

DOI: 10.1007/s00294-003-0478-0

Google Scholar

[11] C.M. Marcello, S.S. Andrei, Silvana Petrofeza da Silva, do Nascimento Silva Roberto, Luiz Artur Mendes Bataus and C.J. Ulhoa: Microbiological Research, Vol. 165 (2010) No.1, p.75.

DOI: 10.1016/j.micres.2008.08.002

Google Scholar

[12] L. Sanz, M. Manuel, J. Redondo, A. Llobell and E. Monte: FEBS Journal, Vol. 272 (2005) No.2, p.493.

Google Scholar

[13] A. Viterbo, M. Harel and I. Chet: FEMS Microbiology Letters, Vol. 238 (2004) No.1, p.151.

Google Scholar

[14] W. Xia, H. Zhang, Y.W. Yan and H.Q. Xian: ACTA Phytophylacica Sinica, Vol. 37 (2010) No.5, p.477(In Chinese

Google Scholar

[15] J.U. Cirano and J.F. Peberdy: Enzyme and Microbial Technology, Vol. 14 (1992) No.3, p.236.

Google Scholar

[16] G.E. Harman, C.K. Hayes, M. Lorito, R.M. Broadway, A.D. Pietro, C. Peterbauer and A. Tronsmo: Phytopathology, Vol. 83 (1993) No.3, p.131.

Google Scholar

[17] C.M. Marcello, A.S. Steindorff, S.P. Da silva, R.N. Silva, B.L. Mendes and C.J. Ulhoa: Microbiological Research, Vol. 165 (2010) No.1, p.75.

DOI: 10.1016/j.micres.2008.08.002

Google Scholar

[18] Y. Chen: Silencing Mapk and RAC Gene in Trichoderma Harzianum Mediated by Dsrna (MS., Harbin Institute of Technology, China 2009), p.20.

Google Scholar

[19] B. Reithner, K. Brunner, R. Schuhmacher, I. Peissl, V. Seidl, R. Krska and S. Zeilinger: Fungal Genetics and Biology, Vol. 42 (2005) No.9, p.749.

DOI: 10.1016/j.fgb.2005.04.009

Google Scholar