Chaos Synchronization Control of an Indirect Field-Oriented Induction Motor

Article Preview

Abstract:

Chaos is extremely sensitive to initial conditions, which makes the system with even smaller initial amount of changes can eventually evolve into a very different result. In an indirect field-oriented control of induction motor drive when estimated errors exist, within a certain range of parameters the system may evolve into chaotic motion through period-doubling bifurcation. In this paper an adaptive controller for synchronizing two indirect field-oriented induction motor drives under chaotic state is presented. Simulation results show that with the state-error feedback controller, synchronous state may be achieved rapidly and robustly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 732-733)

Pages:

1097-1100

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Pecora and T.L. Carroll: Phys. Rev. Lett. Vol. 64 (1990), p.821–824.

Google Scholar

[2] S. Boccaletti, J. Kurths, G. Osipov, and D.L. Valladares and C.S. Zhou: Physics Reports. Vol. 366 (2002), pp.1-101.

DOI: 10.1016/s0370-1573(02)00137-0

Google Scholar

[3] Xiaoshan Zhao, Zhenbo Li, Shuang Li: Appl. Math. Comput. Vol. 217 (2011), pp.6031-6039.

Google Scholar

[4] Xiuchun Li, Wei Xu, Ruihong Li: Chaos Soliton Fract. Vol. 40 (2009), p.642–652.

Google Scholar

[5] Wen Wang, István Z. Kiss, and J. L. Hudson: Chaos. Vol. 10 (2000), pp.248-256.

Google Scholar

[6] M. Feki: Chaos Soliton Fract. Vol. 18 (2003), p.141–148.

Google Scholar

[7] Yimin Lu, Zongyuan Mao, Bo Zhang: Chin. Soc. for Elec. Eng. Vol. 40 (2004), pp.5-9. In Chinese.

Google Scholar

[8] Bo Zhang, Yimin Lu and Zongyuan Mao: J. Contr. Theory Appl. Vol. 2 (2004), pp.353-357.

Google Scholar

[9] A.S. Bazanella and R. Reginatto: Automatica. Vol. 37 (2001), pp.1811-1818.

Google Scholar

[10] F. Gordillo, F. Salas, R. Ortega and J. Aracil: Automatica. Vol. 38 (2002), pp.829-835.

DOI: 10.1016/s0005-1098(01)00274-6

Google Scholar